

Kaydon infinite[®] soluciones con rodamientos para coronas de orientación

Factores de conversión

	Inglés-Métrico	Métrico-Inglés
Longitud	1 pulg = 25.4 mm	1 mm = 0.03937 pulg
	1 pie = 0.3048 m	1 m = 3.281 pies
Fuerza	1 lb = 4.448 N	1 N = 0.2248 lb
	1 lb-pie = 1.356 N-m	1 N-m = 0.7376 lb-pie
Torque/Momento	1 lb-pulg = 113 N-m	1 N-m = 8.851 lb-pulg
	1 oz-pulg = 72.01 gf-cm	1 gf-cm = 0.01389 oz-pulg
Peso	1 lb = 0.4536 kg	1 kg = 2.205 lb
Peso	1 oz = 28.35 g	1 g = 0.03527 oz
Esfuerzo/Presión	1 psi = 6895 Pa (N/m²)	1 Pa = 0.000145 psi
ESTUEIZO/PTESION	1 ksi = 6.895 MPa (N/mm²)	1 MPa = 0.145 ksi
Temperatura	(°F -32) /1.8 = °C	1.8 x °C + 32 = °F

(redondeado a 4 dígitos significativos)

Kaydon infinite[®] soluciones con rodamientos

Guía de referencia Corona de orientación

Oficina principal

2860 McCracken Street Muskegon, MI 49441

Tel +1 231.755.3741 Fax +1 231.759.4102

Servicio al cliente Sin costo 800.514.3066

Índice

Número de página

	■ Tabla de factores de conversión.	interior de la portada
Sección 1	- Introducción y descripción general	3
	■ Introducción.	
	■ Descripción general del producto/Guía de selección	4
	■ Imágenes de aplicaciones	6
Sección 2	2 – Información técnica y guía	12
	Aplicaciones y análisis de carga.	
	Características del rodamiento	18
Sección 3	- Instalación y mantenimiento	23
	Consideraciones de diseño (para el diseñador del equipo)	
	Instrucciones de instalación (para el fabricante del equipo)	
	■ Instrucciones de mantenimiento (para el propietario y/o el usuario del equipo)	44
	■ Grasas lubricantes adecuadas	44
Sección 4	-Tablas y clasificaciones de rodamientos	45
	■ Glosario	46
	■ Serie RK Cuatro puntos de contacto.	47
	■ Serie HS Cuatro puntos de contacto	52
	■ Serie HT Cuatro puntos de contacto	57
	■ Serie MT Cuatro puntos de contacto	63
	■ Piñones para las series RK, HS y MT	70
	■ Serie KH Cuatro puntos de contacto	
	Serie XT Cuatro puntos de contacto	75
	Serie DT Ocho puntos de contacto	
	■ Serie XR Rodillos transversales	
	■ Serie TR Tres hileras de rodillos	103
Sección 5	5 – Productos y servicios de especialidad	114
	■ Rodamientos de pista de alambre WireX®	115
	■ Rodamientos personalizados.	116
	■ Programa de remanufactura	118
	■ Galvanizado Endurakote®	122
Sección 6	5 – Apéndice e información de ventas	124
	■ Hoja de datos de especificaciones	
	■ Sitio Web de Kaydon	127
	■ Literatura de Kaydon	128
	■ Información de garantía y legal	129

La información de diseño y aplicaciones que contiene este catálogo es solo ilustrativa. La responsabilidad para la aplicación de los productos que contiene este catálogo reside exclusivamente en el diseñador del equipo o en el usuario. A pesar de nuestros mejores esfuerzos, el material que contiene este catálogo puede tener imprecisiones y errores de tipografía.

Introducción

Rodamientos Kaydon ha sido uno de los productores líderes de Norteamérica de rodamientos de bolas y de rodillos de diámetro grande desde que se estableció en 1941 y se considera uno de los pioneros de la tecnología de rodamientos grandes.

Capacidad de ingeniería

Además de una variedad de coronas de orientación, Kaydon puede proveer una amplia gama de rodamientos fabricados a la medida para satisfacer sus especificaciones. A solicitud, los expertos y experimentados profesionales de Kaydon pueden proporcionar experiencia y análisis de ingeniería en una amplia variedad de áreas. Nuestro equipo de ingeniería utiliza tecnología actual de computadora apoyada por recursos avanzados para analizar las especificaciones más desafiantes. Con estos recursos podemos proporcionar rápidamente soluciones rentables que satisfacerá las especificaciones que usted requiera. La amplitud de nuestra línea de productos le permitirá seleccionar el tipo de rodamiento adecuado que mejor se adapte a sus requerimientos.

Manufactura

Kaydon puede producir rodamientos de hasta 20 pies de diámetro exterior utilizando las instalaciones y el equipo más modernos de la industria. Las instalaciones de manufactura totalmente integradas permiten a Kaydon tener control completo sobre todos los aspectos de calidad y proporcionar la programación eficaz para satisfacer los requerimientos del cliente. La expansión continua y la versatilidad de manufactura nos han llevado a nuestra posición como un proveedor líder de todos los tipos y tamaños de rodamientos para una variedad de combinaciones de carga. La flexibilidad de manufactura nos permite producir pedidos de cantidades pequeñas para satisfacer sus necesidades.

Recubrimientos

Para mejorar la resistencia a la corrosión, Kaydon puede proporcionar una superficie pintada, un recubrimiento atomizado térmico de zinc u otros recubrimientos según lo especifique el cliente. En forma adicional, ofrecemos el galvanizado Endurakote® que proporciona resistencia a la corrosión y es eficaz en el aumento de la resistencia al desgaste en contactos de superficie deslizante.

Calidad

El programa de aseguramiento de calidad de Kaydon satisface los requerimientos de la norma ISO 9001:2000 además de muchos otros estrictos requerimientos militares y gubernamentales. Kaydon utiliza metodologías como Six Sigma y Lean Manufacturing para mantener operaciones de clase mundial. Estas apoyan nuestro compromiso para establecer y mantener un ambiente de mejora continua. La calidad del producto se asegura en forma adicional por medio de prueba y medición utilizando la tecnología más reciente, lo que nos permite satisfacer los estrictos requerimientos de nuestros clientes.

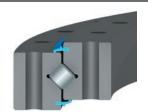
Red de apoyo

Desde el diseño a la entrega final, un equipo de servicio al cliente dedicado se encuentra disponible para apoyarlo todo el tiempo a través del proceso. Kaydon cuenta con un sólido equipo de personal de campo altamente capacitado para apoyar a nuestros clientes directos y a nuestra amplia red de distribución. Nuestros experimentados ingenieros también están disponibles para proporcionar apoyo en el análisis y solución de problemas en la planta e instalaciones según se solicite y sea adecuado. A nivel mundial, contamos con instalaciones de servicio en áreas estratégicas para brindar el apoyo técnico integral y de ventas que nuestros clientes se merecen y esperan.

Descripción general del producto y Guía de selección

Serie RK Series HS, HT, MT y KH Serie XT Diseño ■ Bola de cuatro puntos de contacto ■ Bola de cuatro puntos de contacto ■ Bola de cuatro puntos de contacto Sección transversal con brida en anillos sin Sección transversal rectangular ■ Amplio rango de diámetros y diversas secciones transversales engranaje La Serie KH está precargada con variaciones ■ Versiones con engranaje interno, externo y de precisión Potencial de mayor capacidad que las Series RK y MT debido al tamaño sin engranaje disponibles Versiones con engranaje externo y sin engranaje disponibles ■ Versiones con engranaje interno, externo y sin engranaje **Tamaño** Diámetro exterior de hasta 240" Diámetro exterior de 20" a 47" Diámetro exterior de 4" a 66" **Capacidades potenciales** ■ Momento – 141,000 lb-pie ■ Momento – 900,000 lb-pie ■ Momento – 10,000,000 lb-pie ■ Empuje – 1,150,000 lb ■ Empuje – 175,000 lb ■ Empuje – 6,000,000 lb ■ Radial – 35,000 lb ■ Radial – 230,000 lb ■ Radial - 1,300,000 lb **Aplicaciones típicas** Grúas pequeñas ■ Grúas y manipuladoras Grúas Posicionadores industriales Elevadores aéreos Elevadores aéreos Mesas rotatorias Turbinas de viento/Paneles solares Excavadoras Pantallas rotatorias Mesas de posición/Indexado ■ Turbinas de viento/Paneles solares Máquinas embotelladoras Antenas de radar y satelitales Grúas utilitarias Transportadores Robots Cargadores de troncos y cortadoras apiladoras ■ Equipo médico Equipo de minería

Aplicación muestra



Introducción

Descripción general del producto y Guía de selección

Serie DT Serie XR Serie TR

Diseño

- Bola de ocho puntos de contacto
- Dos hileras de bolas de cuatro puntos de contacto
- Potencialmente 80% más capacidad que una de cuatro puntos de contacto para un diámetro dado
- Sección transversal rectangular
- Engranaje interno, externo o sin engranaje
- Rodillo transversal
- Una sola hilera de rodillos con orientación alternada
- Mayor rigidez y capacidad dinámica que un rodamiento de cuatro puntos de contacto
- Engranaje interno, externo o sin engranaje
- Tres hileras de rodillos
- Tres hileras independientes de rodillos, orientadas para desempeño óptimo
- La mayor rigidez y capacidad para un diámetro dado
- Engranaje interno, externo o sin engranaje

Tamaño

- Diámetro exterior de hasta 240"
- Diámetro exterior de hasta 240"
 - Capacidades potenciales

- Momento 20,000,000 lb-pie
- Empuje 9,000,000 lb
- Radial 2,000,000 lb

- Momento 7,000,000 lb-pie
- Empuje 3,000,000 lb
- Radial 1,400,000 lb

■ Momento – 50,000,000 lb-pie

Diámetro exterior de hasta 240"

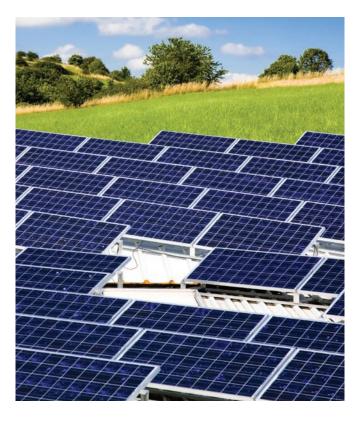
- Empuje 18,000,000 lb
- Radial 4,000,000 lb

Aplicaciones típicas

- Excavadoras
- Grúas grandes
- Grúas marinas
- Turbinas de viento
- **Telescopios**
- Equipo de minería

- Antenas de radar y satelitales
- Torretas
- Fresadoras
- Máquinas de perforación de túneles
- Máquinas de perforación de túneles
- Grúas
- Excavadoras
- Apiladoras y recuperadoras
- Equipo pesado de fresado
- Palas de minería

Aplicación muestra



Aplicaciones - Energía renovable eólica y solar

Aplicaciones - Médicas

Foto cortesía de Varian Medical Systems

Aplicaciones - Equipo pesado

Aplicaciones - Maquinaría

Puente de abordaje para pasajeros desplazable de plataforma para aeronaves FMC Jetway. © 2007 Foto de P. Michaud. Cortesía de FMC Technologies, Jetway.

Aplicaciones - Militares

Imagen cortesía del Ejército de Estados Unidos.

Imagen cortesía de la Armada de Estados Unidos.

Imagen cortesía del Ejército de Estados Unidos.

Imagen cortesía del Ejército de Estados Unidos.

Sección 2 Contenido Información técnica y guía

	Número de página
Función	
Selección	13
Aplicación	14
Características	18
Propiedades	20

Función de una corona de orientación

Un rodamiento sirve como una conexión entre dos estructuras adyacentes que permite la rotación y la transmisión de cargas entre ellas. Además de satisfacer este requerimiento, una corona de orientación normalmente incluye características para el acoplamiento simple y rápido con esas estructuras adyacentes, y comúnmente una característica para facilitar la rotación mecánica de un anillo y su estructura adyacente con relación a la otra.

Las coronas de orientación Kaydon que se describen en este catálogo normalmente se usan en aplicaciones donde su capacidad para transmitir cargas relativamente altas es de importancia primordial. Sin embargo, otros requerimientos potenciales de la aplicación como la velocidad rotacional, la protección contra la contaminación, la exactitud, la resistencia a la fricción y el rango de temperatura del ambiente operacional podrían tener un efecto significativo en la selección de una corona de orientación adecuada.

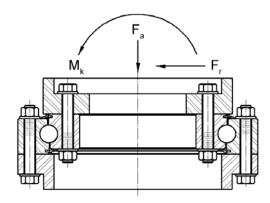
Las siguientes secciones explican el criterio de aplicación y proporcionan una guía para la selección de una corona de orientación.

A solicitud, Kaydon está disponible para ayudar en la selección de una corona de orientación Kaydon. Si se solicita dicha ayuda, le sugerimos llenar la HOJA DE DATOS DE ESPECIFICACIONES que se encuentra en la Sección 6.

Procedimiento de selección sugerido

- 1. Revise la siguiente sección INFORMACIÓN DE LA APLICACIÓN antes de proceder con la selección del rodamiento. La sección INFORMACIÓN DE LA APLICACIÓN es una guía para seleccionar un rodamiento usado en una APLICACIÓN NORMAL según se define en la página 16.
- 2. Determine las cargas máximas del rodamiento. Estas cargas deben incluir todas las cargas dinámicas y estáticas impuestas sobre el rodamiento. Las cargas a su vez se deben transportar a cargas que actúan en el centro del rodamiento. Consulte la Figura 2-1.

Algunos puntos específicos a considerar son:


- Todas las fuerzas aplicadas al rodamiento y al engranaje. No solo las cargas nominales y de trabajo sino también aquellas que puedan presentarse cuando el equipo está en reposo, como las debidas al viento para estructuras grandes.
- Las cargas impuestas durante situaciones de sobrecarga o prueba.

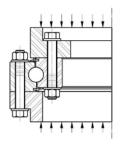
- Las cargas impuestas durante el montaje o desmontaje.
- Los pesos de todos los miembros de la estructura que soporta el rodamiento.
- Todas las combinaciones posibles de cargas máximas. Una grúa, por ejemplo, normalmente tiene un número de condiciones de carga frente al radio de trabajo, durante el uso y al momento de la prueba de sobrecarga.
- **3.** Multiplique las cargas calculadas por el factor de servicio correspondiente: Consulte la página 17.
- 4. Si se desea un engranaje integrado, determine la capacidad requerida del engranaje. Como con las cargas del rodamiento, se deben tomar en consideración todas las condiciones que generarían cargas potenciales del engranaje; algunos ejemplos incluyen aquellas mientras se realiza un trabajo, las estáticas, sobre una pendiente y pruebas de sobrecarga. Uno debe considerar también el ciclo de trabajo en cada una de estas condiciones. Consulte la explicación acerca del Torque en la página 15 para ayudar a determinar la resistencia a la rotación del rodamiento.
- 5. Determine el arreglo de montaje preferido, considerando la ubicación del piñón y del engranaje, así como la instalación y el mantenimiento continuo del rodamiento y los pernos de fijación. Consulte la Sección 3.
- **6.** Consulte la Descripción general del producto y la Guía de selección en las páginas 4 y 5 y después las secciones individuales de tipo de rodamientos para los rodamientos potenciales.
- Realice una selección preliminar comparando las cargas del rodamiento previamente calculadas, incluido el factor de servicio, para la curva de rango de carga del rodamiento. Asegúrese de que todas las combinaciones de carga se encuentren debajo de la curva. En muchos casos existirá una opción de varios rodamientos que satisfacen las clasificaciones de carga requeridas.
- **8.** Si es aplicable, revise la clasificación del engranaje del rodamiento seleccionado.
- 9. Confirme que los pernos de montaje, las placas de montaje y las estructuras de la unión son adecuados para la instalación. Consulte las páginas 32 a la 34.
- **10.** El rodamiento que seleccione debe satisfacer los requerimientos de su diseño.

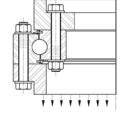
Información de la aplicación

Carga

Una corona de orientación se puede diseñar para usarse en aplicaciones donde las cargas se originan desde una sola dirección o desde varias direcciones relativas a su eje de rotación. Todas estas cargas se pueden convertir en cuatro cargas resultantes actuando sobre el centro del rodamiento, alrededor o a través de él. Estas se conocen como radiales, axiales, de momento y de torque. Se utilizan para evaluar el tamaño y la capacidad del rodamiento y el engranaje integrado si se incorpora uno. Tres de estas cargas se representan visualmente en la Figura 2-1. La cuarta, el torque, actúa de manera como si tratara de hacer girar uno de los anillos del rodamiento con relación al otro.

Fuerzas resultantes que actúan sobre el rodamiento o alrededor de él


Figura 2-1


La carga originada por el equipo y el trabajo que se está realizando se transmite al rodamiento a través de la estructura y de los pernos de montaje. Mientras que las coronas de rotación tienen la capacidad para aceptar todo tipo de combinaciones de carga, están diseñadas principalmente para cargas alineadas en forma paralela con el eje de rotación del rodamiento. Estas cargas axiales o de empuje se originan desde una fuente ubicada a una distancia del eje de rotación del rodamiento y también generan una carga de momento alrededor del centro del rodamiento.

Normalmente, las cargas axiales se aplican de manera que tenderían a comprimir las caras del rodamiento una contra la otra. Consulte la Figura 2-2. Tales cargas se distribuyen uniformemente alrededor de las estructuras de montaje y de la superficie de acoplamiento de los anillos del rodamiento, permitiendo una distribución más uniforme

de la carga en los elementos rodantes interiores. El resultado es un nivel de esfuerzo más bajo en todos los componentes involucrados en la transmisión de la carga.

Cuando la carga axial se "suspende" del rodamiento, se concentra principalmente en un área más pequeña alrededor de los pernos. Esta es una diferencia crítica que se debe considerar en el diseño. Consulte la Figura 2-3.

Carga axial de compresión

Carga axial de tensión (suspendida)

Figura 2-2

Figura 2-3

Una carga alineada en forma perpendicular al eje de rotación del rodamiento se conoce como carga radial. Cuando la carga radial se origina desde una fuente ubicada arriba o debajo de los elementos rodantes del rodamiento, genera una carga de momento alrededor del centro del rodamiento. En aplicaciones donde la carga radial es significativa (definida como mayor que el 10% de cualquier carga axial) o la carga predominante, nuestras coronas de orientación estándar pueden requerir ángulos de contacto modificados, separadores de bola, configuraciones de orificio de montaje o la adición de diámetros de piloteo para admitir estas fuerzas.

Velocidad

Las coronas de orientación generalmente se usan donde la velocidad de rotación es baja, intermitente y oscilatoria. Los límites de velocidad permisibles para las diversas coronas de orientación Kaydon se muestran en la página 20.

Exactitud

La aplicación típica de la corona de orientación no requiere del posicionamiento exacto de la estructura de rotación con relación a la fija. Por lo tanto, todos los rodamientos que se muestran en este catálogo, excepto la Serie KH, no se suministran con tolerancias de diámetro para permitir el posicionamiento preciso y repetitivo.

Algunas aplicaciones requieren de un alto grado de exactitud

y dependen del rodamiento para lograrlo. La consulta temprana con Kaydon puede conducir al uso de una corona de orientación provista con las características necesarias para proporcionar el posicionamiento exacto y repetitivo necesario. Si se requiere una transmisión mecánica, haciéndola integrada al rodamiento se reduce el número de componentes involucrados, disminuyendo la acumulación de tolerancias que afectan en forma adversa la exactitud.

Torque

En la mayoría de las aplicaciones de rodamientos de diámetro grande, la fuerza requerida para vencer la fricción o la resistencia a la rotación del rodamiento es pequeña comparada con aquella requerida para vencer la inercia de la masa que se soporta siempre y cuando el rodamiento esté montado correctamente y contenga la holgura interna estándar. Los rodamientos incluyen una cantidad mínima de holgura para reducir al mínimo la posibilidad de puntos ajustados resultantes de las imperfecciones ordinarias del montaje. Consulte la Sección 3 para una explicación detallada. Un rodamiento deformado por superficies de montaje falta de planitud o fuera de redondez puede requerir una cantidad excesiva de torque de giro. Lo mismo sucede para un rodamiento montado sobre una estructura que se flexiona localmente bajo carga. Otros factores principales que afectan la fricción del rodamiento incluyen el ángulo de contacto, el separador, los sellos y el lubricante.

Para cargas relativamente pequeñas, la corona de orientación se puede hacer girar manualmente. Sin embargo, para aplicaciones que involucran cargas y torque elevados o donde la rotación manual no es deseable o no es práctica, normalmente se pueden adaptar un medio mecánico de rotación del rodamiento y el miembro de acoplamiento deseado.

Las características que permiten la rotación mecánica del equipo incluyen engranajes, ruedas dentadas, ranuras en V y dientes de banda de sincronización integrados en uno de los anillos de la corona de orientación. La solución más común es incorporar un engranaje en uno de los anillos de la corona de orientación como se refleja en diversas series de rodamientos a través de este catálogo. Esta práctica elimina la necesidad de un engranaje separado y los requisitos adicionales de costo e instalación asociados con este.

Medio ambiente

Las coronas de orientación son adecuadas para utilizarse en interiores y al aire libre, donde las condiciones incluyen la exposición indirecta a la humedad y la contaminación, y a intervalos de temperatura de -40 °F a +140 °F (-40 °C a +60 °C). La operación que rebase estos extremos de temperatura puede requerir de cambios de lubricación y material no metálico utilizado en las coronas de orientación estándar. La operación en ambientes muy sucios o húmedos puede requerir el uso de sellos o protecciones adicionales en la estructura de montaje para limitar la exposición del rodamiento.

Recubrimientos

Para mejorar la resistencia a la corrosión, Kaydon puede proporcionar una superficie pintada, un recubrimiento atomizado térmico de zinc u otros recubrimientos, según lo especifique el cliente. En forma adicional, ofrecemos el galvanizado Endurakote que proporciona resistencia a la corrosión y es eficaz para aumentar la resistencia al desgaste en contactos de superficie deslizante.

Arreglo del montaje

Un método ampliamente utilizado para sujetar coronas de orientación es atornillar de lado a lado las dos pistas con sujetadores espaciados uniformemente alrededor de la cara de montaje completa. Sin embargo, se reconoce que el diseñador del equipo no siempre puede adaptar este tipo de arreglo y puede requerir de orificios roscados e incluso de patrones especiales de pernos por razones de montaje y mantenimiento.

El diseñador es responsable del arreglo del montaje y de la validación del diseño.

Soldar los anillos es otra opción para sujetar una de las coronas de orientación a su estructura de acoplamiento. El rodamiento se provee con un anillo de soldadura de acero de bajo carbono o una banda soldada en una de las pistas. El anillo de soldadura se puede entonces soldar a la máquina sin dañar el rodamiento, siempre y cuando se tomen las precauciones adecuadas. Debido a que el uso de anillos de soldadura es poco frecuente, no se tratan en este catálogo. Para este tipo de diseños póngase en contacto con Kaydon.

Soldar el rodamiento o soldar cerca del rodamiento puede dañarlo.

Lubricación

La grasa es el lubricante típico que se utiliza para las coronas de orientación. Se requiere la aplicación periódica de lubricante nuevo en el rodamiento para reducir la fricción y el desgaste, proporcionar protección

contra la corrosión, desalojar los contaminantes y mejorar el desempeño de los sellos. Se proporcionan una o más graseras u orificios de lubricación en todas las coronas de orientación con este propósito. Se pueden requerir graseras u orificios de lubricación adicionales y se pueden suministrar sobre pedido.

Siempre que la corona de orientación tenga un engranaje integrado, este también requiere de la aplicación periódica de grasa para el desempeño óptimo. Para la explicación adicional sobre la lubricación, consulte la página 44 (Sección 3).

Aplicación normal

Se debe prestar atención especial a la selección del rodamiento siempre que las condiciones de aplicación sean diferentes de aquellas que se consideren normales. Para una "aplicación normal" de las coronas de orientación, deben aplicar las siguientes condiciones:

- Eje de rotación vertical
- Cargas de empuje de compresión y de momento predominantes
- Carga radial no mayor de 10% de la carga de empuje
- Rotación intermitente con velocidad de línea de paso limitada a 500 fpm para rodamientos de una sola hilera y 300 fpm para rodamientos de varias hileras como se muestra en este catálogo
- Temperatura de operación entre -40 °F y +140 °F (-40 °C y +60 °C)
- Superficies de montaje maquinadas y reforzadas para limitar la desviación a partir de un plano verdadero a los niveles indicados en las páginas 25 a la 31, Figuras 3-1 a la 3-9
- Procedimiento de instalación para garantizar la redondez de las dos pistas, como mediante la aplicación de una carga de empuje centrada mientras se aprietan los pernos utilizando el patrón alternado de estrella (consulte la Sección 3)
- Aprovisionamiento para la lubricación periódica
- Aprovisionamiento para la revisión periódica de los pernos de montaje para verificar su tensión correcta

Factores de servicio

Consulte la Tabla 2-4 para el factor de servicio correcto de la aplicación. Las curvas de clasificación de carga que se muestran en este catálogo tienen un factor de servicios de la aplicación de 1.00. Para determinar la clasificación requerida del rodamiento, multiplique el factor de servicio de la aplicación por las cargas aplicadas sobre el rodamiento.

Los factores de servicio de la aplicación se basan en varias consideraciones, pero principalmente en la frecuencia de uso con cargas más elevadas frente a las normales y al potencial para cargas extremas o sobrecargas. Si el equipo planeado y la aplicación no aparecen en la Tabla 2-4, para el dimensionado inicial seleccione una aplicación similar. Si existe alguna duda relacionada con esta selección, póngase en contacto con Kaydon. Si la aplicación involucra la operación más frecuente que la indicada en los párrafos anteriores y los ciclos de trabajo definitivos para las cargas, velocidades y oscilación están disponibles, llene y envíe la Hoja de datos de especificaciones de la Sección 6. Para dichas aplicaciones, la vida de fatiga del rodamiento y el engranaje pueden dictar los diseños requeridos, y los factores de servicio no deben ser los únicos criterios utilizados para la selección de una corona de orientación.

No existen estándares que abarquen toda la industria para clasificar la capacidad de las coronas de orientación. Como resultado, es frecuente que las clasificaciones y servicio de los proveedores de rodamientos varíen y aún resulten en el mismo diseño y tamaño aproximados de rodamiento para una aplicación dada. Además, estos factores pueden ser sustituidos por la especificación del cliente, las clasificaciones FEA (Análisis por elementos finitos) o por regulaciones de las autoridades de certificación.

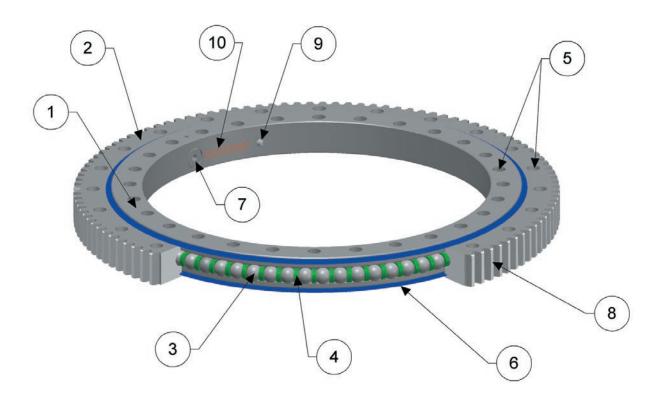

El diseñador del equipo es el responsable de la determinación del factor de servicio correcto. Esto se puede lograr con las sugerencias de Kaydon y su ayuda, sobre pedido.

Tabla 2-4 - Factores de servicio

Aplicación	Factor de servicio
Dispositivos de elevación aéreos – Canastillas aéreas, plataformas, escaleras, etc.	1.00
Atracciones de parques de diversions	Criterio alterno *
Transportadores	1.00
Grúas	
Móviles - (cargas limitadas por la estabilidad de la máquina)	
Trabajo de construcción normal (montadas sobre llantas)	1.00
Trabajo de construcción normal (montadas sobre orugas)	1.10
Trabajo de producción como depósitos de chatarra y astilleros	1.25
Manejo forestal (explotación forestal)	1.50
Grúas apiladoras (debe incluir fuerzas dinámicas como cargas)	1.25
Pedestal o torre - (cargas no limitadas por la estabilidad de la máquina)	
Cargas monitoreadas continuamente por dispositivos de carga segura	1.25
Aplicaciones con riesgo de aplicación súbita de carga de impacto	1.50
Maradentro	Criterio alterno *
Excavadoras	
Carga limitada por inclinación	1.25
Carga limitada por alivio de presión hidráulica	1.50
Rotadores de gancho y agarre para grúas	Criterio alterno *
Mesas de indexado y de torniquete – (incluya cualquier carga de impacto para evaluación)	
Uso ocasional con rotación intermitente	1.00
Uso frecuente con rotación intermitente	1.25
Uso frecuente con rotación intermitente y cargas de impacto	1.50
Rotación continua	Criterio alterno *
Manipuladores y robots industriales	
Servicio ocasional	1.00
Servicio frecuente	1.25
Servicio continuo	Criterio alterno *
Palas de minería	Criterio alterno *
Apiladoras - Recuperadoras	Criterio alterno *
Plantas siderúrgicas	
EAF	Criterio alterno *
Carros de cucharón	Criterio alterno *
Torretas de cucharón	Criterio alterno *
Engranaje de dirección – (debe incluir las cargas dinámicas y de impacto debido a las fuerzas de tránsito)	
Llantas neumáticas	1.25
Llantas sólidas	1.50
Máquinas de perforación de túneles	Criterio alterno *
Clarificadores para tratamiento de aguas, espesadores y distribuidores rotatorios	Criterio alterno *
Turbinas de viento	Criterio alterno *

^{*} Como esta aplicación involucra criterio adicional, requiere el uso de un método alterno para evaluación y selección de la corona de orientación.

Características de la corona de orientación

Anillos interno y externo (1 y 2)

El rodamiento consta de un anillo interno y uno externo fabricados de acero con contenido medio de carbono. Cada uno incluye cuando menos una pista de rodadura adaptada para transferir las cargas y el movimiento relativo de una estructura del equipo a la otra. Las pistas están endurecidas en forma selectiva en la superficie requerida y a la profundidad necesaria para transmitir los altos esfuerzos impuestos durante la operación del equipo. La Figura 2-5 refleja los patrones normales de dureza de los rodamientos de bolas de cuatro puntos de contacto (Series RK, HS, HT, MT, KH y XT) y de rodillos transversales (Serie XR). Los rodamientos de varias hileras (Series DT y TR) reciben tratamiento similar en sus pistas con alto esfuerzo. En una ubicación alrededor de la pista, existe un área sin endurecer conocida como el claro de dureza o "punto suave". Esta área se releva para reducir al mínimo la capacidad del elemento rodante de aplicar esfuerzo en ella. Solo un lado de cada anillo está fabricado para acoplarse con la estructura de apoyo. Uno o los dos anillos pueden incluir un mecanismo de transmisión integrado como un engranaje o los dientes de una rueda dentada para activar la ventaja mecánica necesaria para vencer la resistencia a la rotación y proporcionar el movimiento relativo a través del rodamiento.

Patrón de endurecido para pista de bolas

Patrón de endurecido para pista de rodillos

Figura 2-5

Elementos rodantes (3)

Los elementos rodantes de precisión posibilitan la rotación relativa y la transmisión de la carga entre los anillos interno y externo. Las bolas o los rodillos endurecidos de aleación de acero al cromo pueden servir como los elementos rodantes. Estos están dimensionados adecuadamente para el esfuerzo anticipado y hermanados cuidadosamente para proporcionar la distribución uniforme de la carga entre los anillos y reducir al mínimo la resistencia a la rotación.

Espaciadores (4)

Los espaciadores separan los elementos rodantes y están diseñados para reducir al mínimo la fricción, el deslizamiento y la interferencia durante la rotación. Estas

condiciones ocurren como resultado de la distribución de carga y la deformación de las estructuras de montaje y los anillos del rodamiento durante la operación del equipo. Los espaciadores generalmente están fabricados de material plástico compatible con los lubricantes y los ambientes de operación típicos.

Ocasionalmente para los rodamientos de bolas, se coloca una bola de tamaño más pequeño entre las bolas grandes que transportan la carga en lugar de un espaciador. Estas se conocen como "bolas espaciadoras" y pueden proporcionar una solución a una condición única específica para una aplicación particular. Donde la aplicación lo justifique, se utiliza un separador en lugar de los espaciadores o las bolas espaciadoras.

Orificios de montaje (5)

El patrón ideal de los orificios para sujetar los dos anillos de la corona de orientación es un círculo completo de orificios de lado a lado espaciados uniformemente. Sin embargo, se reconoce que el diseñador del equipo no siempre puede adaptar este tipo de arreglo y puede requerir de orificios roscados e incluso de patrones de pernos especiales en uno o los dos anillos por razones de montaje y mantenimiento.

Kaydon ha adaptado estos requerimientos especiales de montaje. En la Figura 2-6 aparecen muestras de estas opciones.

El diseñador, el fabricante o el usuario del equipo es responsable de determinar si el diseño del montaje es adecuado. Algunos métodos empleados para realizar esta determinación son llevar a cabo análisis y después pruebas para evaluar y validar que la estructura, los sujetadores y la unión cuenten con la resistencia y la integridad adecuadas para soportar las cargas máximas y todas las cargas repetitivas posibles.

Orificio de lado a lado

Orificio roscado

Orificio con caja

Orificio roscado del lado lejano

Figura 2-6

Sellos (6)

Se incluye un sello en cada lado de la corona de orientación Kaydon para retención de lubricante y protección del rodamiento del polvo y la contaminación de partículas pequeñas. Los sellos están fabricados de un material elastómero compatible con la mayoría de los lubricantes de uso general que contienen aceite mineral y grasas que utilizan espesadores de litio o calcio. Si las condiciones requieren de sellado diferente, Kaydon puede proporcionar detalles de opciones adicionales sobre pedido.

Tapón de carga (llenado) (7)

Los elementos rodantes en los rodamientos Kaydon se pueden insertar mediante un orificio barrenado radialmente a través de la pista sin engranaje y después taponarse. El tapón se retiene mecánicamente con un pasador para garantizar que se mantiene la orientación adecuada. Sin embargo, los rodamientos de la Serie TR no tienen un tapón de carga ya que requieren que uno de los anillos sea partido para el montaje de todos los elementos rodantes. El desmontaje del tapón de carga anula la garantía.

Engranaje (8)

Las coronas de orientación se pueden suministrar con dientes de engranaje como parte integral del anillo interno o externo. Estos son normalmente un engranaje recto estándar de involuta de profundidad completa o Stub con un ángulo de presión de 20° con provisión para holgura entre engranajes y que cumplen con norma de calidad Q6 de la AGMA.

Sin embargo, cuando se requiere, se pueden proporcionar modificaciones de las formas básicas, de los ángulos de presión y de la calidad del diente. Para fines de montaje, el punto máximo de variación del engranaje se identifica con pintura amarilla. Se pueden aplicar métodos alternativos sobre pedido.

Grasera (9)

Se suministra cuando menos una grasera en uno de los anillos del rodamiento para la lubricación periódica de la pista y de los componentes internos. En los diseños con dientes de engranaje integrados, esta se ubica en el anillo sin engranaje. El número suministrado normalmente aumenta con el diámetro del rodamiento. Se pueden incluir más o menos sobre pedido.

Identificación (10)

La identificación consiste en el número de parte y el número de serie del rodamiento. Esta información se ubica junto al tapón de llenado.

Propiedades de la corona de orientación

Clasificación de carga

La mayoría de las aplicaciones de la corona de orientación requieren que el rodamiento trasmita carga estática o cargas elevadas en rotación lenta con operación intermitente. En tales aplicaciones, la vida de fatiga del componente interno del rodamiento es un problema menor comparado con la capacidad de carga estática y poco frecuente del rodamiento. La mayor parte de la selección del rodamiento se basa en la tabla de clasificación de carga de Kaydon y un factor de servicio adecuado para la aplicación prevista (consulte la Tabla 2-4 Factores de servicio, página 17).

El uso de las tablas de clasificación de carga de Kaydon requiere del cumplimiento de todas las instrucciones y lineamientos que se proporcionan en la sección Instalación y Mantenimiento de este catálogo; consulte las páginas 25 a la 44.

No seguir las recomendaciones anteriores puede limitar severamente la capacidad del rodamiento, de los pernos de retención y de las estructuras de montaje adyacentes para transmitir en forma segura las cargas indicadas.

Para todo los rodamientos listados en este catálogo, se muestran las tablas de clasificación de carga con un factor de servicio de 1.00 excepto para las Series KH y XR. Los rodamientos de cualquiera de estas series se utilizan donde las condiciones de operación y las expectativas de desempeño requieren diferentes criterios de selección. Para ayudar en forma adicional al diseñador a realizar una selección de las Series KH o XR, se proporcionan las clasificaciones y los resultados del desempeño.

Si la aplicación involucra la operación más frecuente que la indicada en la página 16 y los ciclos de trabajo definitivos para las cargas, las velocidades y la oscilación están disponibles, Kaydon puede ayudarle en la selección del rodamiento, sobre pedido. Si se solicita dicha ayuda, se recomienda que alguien llene y envíe la Hoja de datos de especificaciones de la Sección 6.

Para esas aplicaciones, la vida de fatiga del rodamiento y del engranaje puede dictar los diseños. Como resultado, los factores de servicio no deben de ser el único criterio utilizado para la selección de una corona de orientación.

Velocidad

La rotación de las coronas de orientación de una sola fila, como las de las Series RK, HS, HT o MT, debe ser intermitente y limitada a una velocidad máxima de línea de paso de 500 pies por minuto (fpm). Para rodamientos con varias filas de rodillos, como los de las Series DT y TR, la velocidad máxima de línea de paso debe estar limitada a 300 fpm en base intermitente. Las Series KH y XR son adecuadas para usarse para rotación continua a 500 fpm y rotación poco frecuente hasta 750 fpm. Se pueden realizar modificaciones en cualquiera de estos rodamientos para permitir la rotación continua y la carga a velocidades que excedan el valor dado. Las modificaciones pueden incluir el cambio en la holgura interna, el ángulo de contacto, la holgura, la separación del elemento rodante o los sellos. Si requiere ayuda, póngase en contacto con Kaydon para obtener un rodamiento que satisfaga sus requerimientos específicos.

Exactitud

Todas las coronas de orientación que se muestran en este catálogo, con excepción de las de la Serie KH, se proveen con suficiente holgura interna para permitir algunas imperfecciones en las superficies de montaje y para pequeñas cantidades de flexión bajo carga. No se proveen con diámetros externos que tengan una baja tolerancia para permitir el posicionamiento preciso de la estructura de rotación con relación a la fija. Sobre pedido, Kaydon puede suministrar rodamientos con holgura o precarga reducida, variación reducida y diámetros externos para fines de localización.

La Serie KH se provee sin holgura interna y diámetros externos más precisos para aquellas aplicaciones que requieren exactitud adicional. Consulte la página 72 para más información relacionada con la exactitud de la Serie KH. Si es necesario, los rodamientos se pueden proveer con holgura interna reducida para reducir al mínimo el "balanceo". Se debe ejercer cuidado adicional para garantizar que los rodamientos instalados estén redondos y planos con el fin de aumentar al máximo la capacidad y el desempeño del rodamiento. Consulte las páginas 25 a la 31 (Instalación y mantenimiento).

Nuestro engranaje integrado estándar se fabrica de acuerdo con la norma de calidad Clase Q6 de la AGMA, con excepción de la Serie KH. Si la aplicación lo justifica, los engranajes se pueden suministrar con la calidad Clase Q11 de la AGMA. El engranaje integrado suministrado en la Serie KH está de acuerdo con la calidad Clase Q8 de la AGMA.

Fricción de rotación (torque)

El torque de fricción para una corona de orientación debido a las cargas externas se puede estimar utilizando la siguiente ecuación. Esta asume que el rodamiento está montado de acuerdo con los lineamientos que se proporcionan en la sección Instalación y mantenimiento, páginas 25 a la 44 de este catálogo. Este es un estimado y se ve influenciado en forma significativa por las fluctuaciones en las características críticas; por lo tanto, se aconseja tener en cuenta el torque adicional al seleccionar inicialmente el arreglo de transmisión. Una vez que se haya acumulado algo de experiencia con la aplicación, el arreglo de transmisión se puede alterar como corresponda. Además, tome nota de que la ecuación no es válida cuando las cargas de aplicación son iguales a cero, ya que aún existirá algo de resistencia a la rotación debido al peso de los componentes que giran y a la resistencia de fricción de los sellos y el lubricante.

$$M_{w} = \frac{\mu (4.4M_{k} + F_{a}D_{p} + 2.2F_{r}D_{p})}{2}$$

Donde: M_w = torque del rodamiento bajo carga, (lb-pie)

μ = coeficiente de fricción

= 0.006 para las Series RK, HS, HT, MT, KH, XT y DT

= 0.004 para las Series XR y TR

 $M_k = \text{carga de momento, (lb-pie)}$

 $F_a = carga axial, (lb)$

 $F_r = \text{carga radial, (lb)}$

D_p = diámetro de paso del rodamiento, (pies)

Clasificación del engranaje

En las tablas de selección se muestran las clasificaciones de diente de engranaje tangencial para cada combinación aplicable de rodamiento y engranaje. Estas clasificaciones solo toman en cuenta la resistencia a la fatiga de flexión que se genera utilizando la comúnmente aceptada Ecuación de Lewis. Son adecuadas para el dimensionado cuando la aplicación involucra baja velocidad y rotación intermitente/ oscilatoria. Para aplicaciones con ciclos de trabajo más altos o aceleración frecuente y rápida, puede ser necesario utilizar métodos alternativos, incluyendo la fatiga de la superficie para determinar la idoneidad del diseño del diente del engranaje.

Como precaución se recomienda que el diseñador de la máquina verifique la idoneidad del engranaje con base en sus propios métodos de cálculo y la experiencia anterior.

Cuando se requiera resistencia superficial y resistencia a la flexión adicionales, Kaydon puede dar cabida a las dos proporcionando un engranaje con filete redondeado, y flancos y raíz endurecidos en forma selectiva. Consulte la Figura 2-7. En ocasiones y donde la aplicación lo permita, se puede utilizar un engranaje con solo los costados del diente endurecidos. Esto aumenta la resistencia de la superficie del diente, pero puede reducir su resistencia a la flexión dependiendo de la configuración inicial y final que se esté evaluando.

Flancos y raíz endurecidos en forma selectiva

Figura 2-7

Sección 3 – Instalación y mantenimiento

Las siguientes instrucciones proporcionan información esencial para la aplicación, la instalación y el mantenimiento correctos de las coronas de orientación Kaydon. Estas instrucciones se dividen en secciones de acuerdo con cada una de estas disciplinas y las debe realizar personal calificado.

No apegarse a estas instrucciones puede afectar en forma significativa la capacidad de la corona de orientación para proporcionar servicio satisfactorio y puede ocasionar la falla prematura del rodamiento, así como poner en riesgo la seguridad de todo el personal ubicado en las áreas cercanas al equipo. Las propiedades

técnicas de las coronas de orientación se cubren en las Secciones 2 y 4 del catálogo 390 de Kaydon.

Kaydon no acepta ninguna responsabilidad por:

- La falta de cumplimiento de las instrucciones que se proporcionan en esta literatura de Instalación y mantenimiento.
- 2. La omisión al transmitir el contenido a un tercero.

Sección 3 Contenido Instalación y mantenimiento

Número de página

Parte 1	- Consideraciones de diseño (para el diseñador del equipo)25
	1.1 Estructura de montaje
	1.1.1 Rigidez
	1.1.2 Características de interfase
	1.1.2.1 Planitud
	1.1.2.2 Pilotos
	1.1.2.3 Orificios
	1.1.3 Protección
	1.1.4 Acceso (para instalación y mantenimiento)
	1.1.5 Sujeción
	1.1.5.1 Pernos
	1.1.5.2 Soldadura
	1.2 Acoplamiento de piñón y engranaje
	1.2.1 Consideraciones de diseño del piñón
	1.2.2 Backlash entre engranajes
	1.3 Ejemplos de montaje
Parte 2	- Instalación y mantenimiento (para el fabricante del equipo)38
	2.1 Manejo
	2.2 Almacenamiento
	2.3 Instalación
	2.3.1. Preparación
	2.3.2 Posicionamiento
	2.3.3 Aseguramiento
	2.3.4 Backlash entre engranajes y alineación
	2.4 Post-instalación
	2.5 Mantenimiento
	2.5.1 Lubricación
	2.5.1.1 Rodamiento
	2.5.1.2 Engranaje
	2.5.2 Pernos
	2.5.3 Sellos
	2.5.4 Limpieza
	2.5.5 Ruido, aspereza, vibración
	2.5.6 Torque
	2.5.7 Inclinación (holgura)
	2.5.8 Desmontaje y desecho
Parte 3	- Mantenimiento (guía para el propietario y/o el usuario del equipo) 44
	3.1 Antes de usar
	3.2 Durante el uso
	3.3 Tabla de grasas lubricantes

Consideraciones de diseño (guía para el diseñador del equipo)

Las coronas de orientación, debido a la naturaleza de su diseño, tienen baja rigidez estructural haciéndolas altamente susceptibles de cualquier deformación ocasionada por las estructuras que las rodean. Dichas deformaciones ocasionan variaciones en la geometría interna diseñada y fabricada en forma precisa del rodamiento y afectarán de manera adversa el desempeño y la vida.

1.1 Estructura de montaje

La mayoría de los diseños de componentes son una concesión necesaria de lo ideal a lo práctico. El diseño de las estructuras de montaje para los rodamientos grandes de cargas múltiples no es la excepción. En cualquier caso, las estructuras de montaje deben satisfacer varios criterios, arriba y abajo del rodamiento, para obtener la vida y el desempeño máximos del rodamiento. Entre estos se encuentran la rigidez, la sujeción, la precisión, la exactitud, la protección y el acceso.

El requerimiento para superficies con mayor rigidez y precisión más alta es más crítico bajo las siguientes condiciones:

- Cargas crecientes
- Mayor frecuencia de operación
- Diámetros decrecientes
- Secciones transversales del rodamiento decrecientes
- Holgura interna del rodamiento decreciente
- Límites de torque decrecientes

La protección del rodamiento y la accesibilidad para el mantenimiento son críticas para garantizar el desempeño y la duración del rodamiento.

Los siguientes lineamientos hacen referencia al diámetro del elemento rodante (D_w) y al diámetro de la pista (D_p) del rodamiento. Durante las etapas iniciales, el diseñador puede utilizar las siguientes aproximaciones. Si se requiere, póngase en contacto con Kaydon para el dibujo de montaje del rodamiento específico, para la confirmación del diámetro de la pista y otras características importantes del diseño.

$$D_{w} \approx 0.5 \cdot H_{min}$$
$$D_{p} \approx 0.5 \cdot (L_{0} + L_{i})$$

Kaydon recomienda el acero para fabricar cualquier estructura utilizada junto con sus coronas de orientación, a menos que se especifique otra cosa. El material de acero final seleccionado variará según lo requiera el diseño final de la estructura y los esfuerzos resultantes. El uso de aceros de resistencia más alta no necesariamente da como resultado mayor rigidez. La elección del material para la estructura la realiza el diseñador o el fabricante del equipo.

1.1.1 Rigidez

El montaje ideal del rodamiento sería infinitamente rígido y aislaría al rodamiento de las cargas y deformaciones localizadas. Reconociendo que esto no es práctico, mientras aún se mantienen las metas originales de diseño del equipo, Kaydon preparó las Figuras 3-1 a la 3-3 (flexión) mostrando las flexiones máximas permisibles que los rodamientos de bolas típicos de cuatro puntos y de ocho puntos pueden soportar mientras se mantienen funcionando correctamente. En la Figura 3-1 se muestra la flexión circunferencial admisible ($\delta_{\rm d}$) alrededor de la cara de montaje de la estructura. No deben existir cambios abruptos en la flexión. El error máximo de flexión debe de ser gradual, similar a un patrón de onda senoidal y no ocurrir en un tramo menor de 90° y no más de una vez en 180°.

Otra consideración es la flexión admisible a partir de un plano verdadero en dirección radial (δ_v) también conocida como convexidad o perpendicularidad. Para diseños de rodamiento de bolas esto se puede terminar utilizando la siguiente ecuación.

$$\delta_{\rm V} \approx 0.003 \cdot D_{\rm W} \cdot P$$

Donde P = distancia radial de la cara de la estructura de montaje

La flexión máxima circunferencial y radial para los diseños de rodamiento de rodillos es de 2/3 de aquella para el rodamiento de bolas de cuatro puntas del tamaño equivalente.

La reducción de los valores de $\delta_{\rm d}$ y $\delta_{\rm v}$ puede ser necesaria debido a los requerimientos de ciertas aplicaciones como menor Resistencia a la rotación o mayor precisión.

Los diseños del equipo que no cumplan con estos requerimientos afectarán en forma adversa el desempeño del rodamiento, imponiendo cargas concentradas sobre el rodamiento y los sujetadores adyacentes. La concentración de cargas dará como resultado cargas más altas en los elementos rodantes, las pistas y los sujetadores adyacentes. Esto conducirá a mayor resistencia a la rotación, menor vida del rodamiento y de los sujetadores, y un ambiente de trabajo potencialmente inseguro.

Flexión permisible frente al diámetro de la pista

No debe ocurrir dentro de 90° ni más de una vez en 180° del recorrido circunferencial

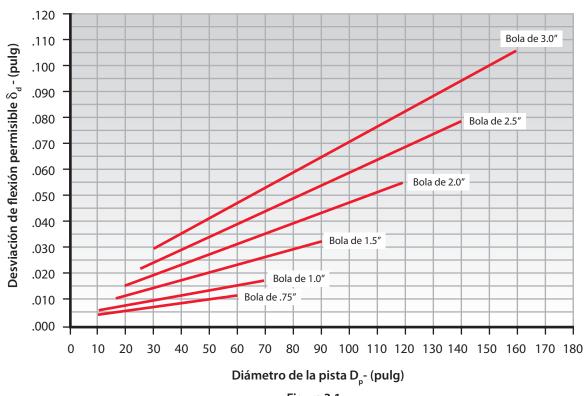
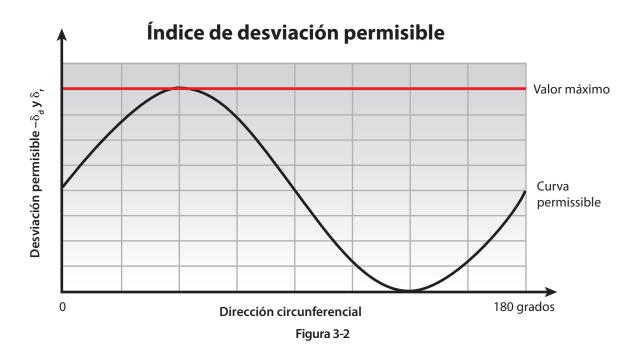



Figura 3-1

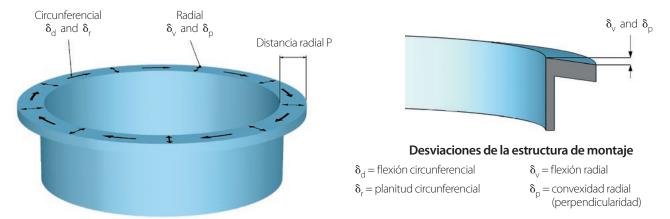
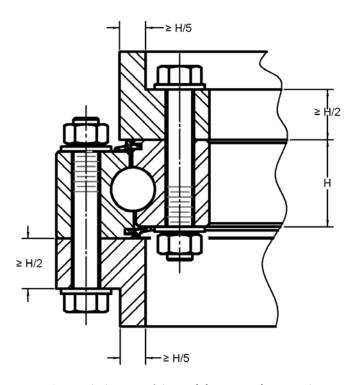
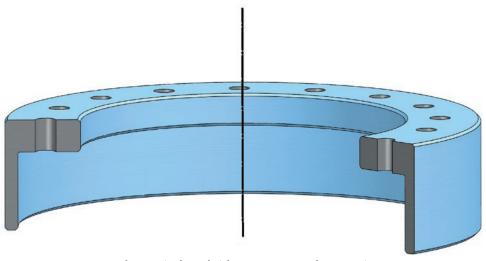



Figura 3-3

Kaydon ofrece los siguientes lineamientos para ayudar a los diseñadores. No seguir alguno de estos puede ocasionar riesgo adicional y/o falla prematura. Por lo tanto, para validar el diseño se requiere probar la configuración completa y la instalación del rodamiento. Se requiere extremar las precauciones durante cualquier prueba, ya que la falla de algún componente podría conducir a la separación completa. Esto podría dar como resultado lesiones o la muerte de alguna persona en las proximidades.


- Se debe utilizar una estructura vertical uniforme y con forma de tubo con una brida en un extremo que permita el espacio adecuado para la instalación y el mantenimiento de los sujetadores. Esta estructura sería similar al extremo de una tubería con brida con un diámetro cercano al de la pista del rodamiento. Consulte la Figura 3-5. Para el dimensionado inicial, el espesor de la pared de esa tubería debería ser cuando menos de 1/5 de la altura total del anillo del rodamiento adyacente. Consulte la Figura 3-4.
- El montaje o la placa de la estructura que soporta el rodamiento debe tener un espesor terminado de 1/2 de la altura del anillo del rodamiento para rodamientos de elementos rodantes de una sola hilera y cuando menos 1/3 de la altura del anillo del rodamiento para rodamientos de varias hileras. Generalmente, las placas de montaje más delgadas requieren más apoyo estructural y soportes para hacer más rígido el diseño completo. El espesor final de la placa requerida variará dependiendo de la configuración completa de la estructura y de la carga que se vaya a aplicar. Como se mencionó anteriormente, se recomienda realizar pruebas.
- La cara de la estructura que soporta el rodamiento debe hacer contacto con la cara de montaje completa del anillo del rodamiento y tener un acabado superficial de 250 AA o mejor.

- Obtener una distribución uniforme de la carga sobre el rodamiento es difícil cuando se usa un bastidor, una estructura soldada y placas de refuerzo para el soporte estructural debajo de la placa de acoplamiento. Si es necesario utilizar ese diseño, el bastidor y la estructura de soporte se deben orientar para proporcionar tanto soporte como sea posible directamente debajo de la pista del rodamiento. Consulte las Figuras 3-6 y 3-7.
- Si la estructura inmediata que soporta el rodamiento consta de dos placas, una soldada encima de la otra, se deben tomar precauciones para evitar la deformación de las placas durante el proceso de soldadura, ya que esto podría conducir a vacíos no detectados entre ellas. Bajo carga, las placas se flexionarán ocasionando cargas dinámicas no uniformes e incrementadas sobre el rodamiento y los pernos de retención. Consulte la Figura 3-8.
- La variación en la "longitud de agarre" física de los pernos de montaje del rodamiento no está permitida en el diseño de la estructura de montaje. La "longitud de agarre" física es la distancia de la parte inferior de la cabeza del perno a la primera rosca de acoplamiento. Esa variación impone una cantidad desproporcionada de carga sobre aquellos que tienen una longitud de agarre más corta. Esto puede conducir a la falla prematura y/o la separación del conjunto.
- Se debe prestar mucha atención a la rigidez del área de montaje de transmisión del engranaje. Los diseños con rigidez insuficiente en esta área permitirán la flexión y darán como resultado la alineación deficiente del acoplamiento del engranaje y el piñón. La alineación deficiente puede conducir a la falla prematura del piñón, del engranaje y de la transmisión del engranaje.

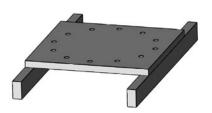
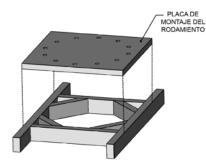

Requerimientos mínimos del soporte de montaje

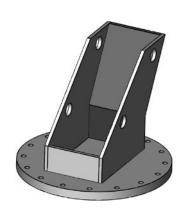
Figura 3-4

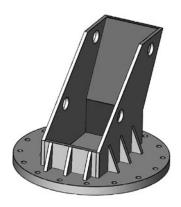


Tubo vertical con brida para soporte de montaje


Figura 3-5

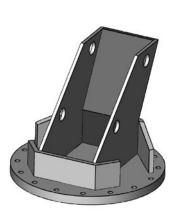
Bastidor sin placas de refuerzo cerca de los orificios de montaje que requiere una placa más gruesa.

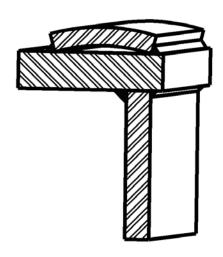

Placas de refuerzo agregadas cerca de los orificios de montaje del rodamiento que aumentan la rigidez.


Placas de refuerzo agregadas cerca de los orificios de montaje y anillo que reemplaza a la placa para rigidez adicional.

Bastidor fabricado y soportes de la estructura

Figura 3-6


El torniquete sin soportes disminuye la rigidez de la placa lateral y la placa de montaje, reduciendo la distribución de la carga alrededor del patrón del perno y el rodamiento.


El torniquete con soportes aumenta la rigidez de la placa lateral y la placa de montaje y proporciona mayor distribución de la carga alrededor del patrón del perno y el rodamiento.

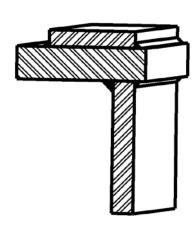

Torniquetes fabricados

Figura 3-7

El torniquete con soportes ubicados cerca de los orificios de montaje de los pernos aumenta la rigidez de la placa lateral y la placa de montaje y proporciona distribución adicional de la carga alrededor del patrón del perno y el rodamiento.

Placas soldadas - Potencial para deformación perjudicial

Figura 3-8

1.1.2 Características de interfase

1.1.2.1 Planitud

Las superficies de montaje del rodamiento se deben maquinar planas después de que toda la soldadura y el tratamiento de alivio de esfuerzos en la estructura estén terminados. Si es necesaria soldadura subsiguiente, esta se debe aplicar evitando deformar la superficie de montaje previamente maquinada. El grado permisible de falta de planitud en dirección circunferencial ($\delta_{\rm r}$) para rodamientos de bolas típicos de cuatro y ocho puntos de contacto se muestra en la Figura 3-9. La falta de planitud, como la deformación, debe ser gradual, reflejando a un patrón de onda senoidal y no ocurrir en un tramo menor de 90° y no más de una vez en 180°.

Además de la planitud en dirección circunferencial, se debe determinar la convexidad o la desviación de perpendicularidad ($\delta_{\rm p}$) permisibles en dirección radial. Para los diseños de rodamiento de bolas, esto se puede realizar utilizando la siguiente ecuación:

$$\delta_p \approx 0.001 \cdot D_w \cdot P$$

Donde P = distancia radial de la cara de la estructura de montaje

El grado permisible de falta de planitud para rodamientos de rodillos es 2/3 del límite para un rodamiento de bolas de cuatro puntos de contacto de tamaño equivalente.

Puede ser necesario reducir los valores de $\delta_r y \, \delta_p$ en las aplicaciones que requieran baja resistencia a la rotación o alta precisión.

Planitud permisible frente a diámetro de la pista

No debe ocurrir dentro de 90° ni más de una vez en 180° de recorrido circunferencial

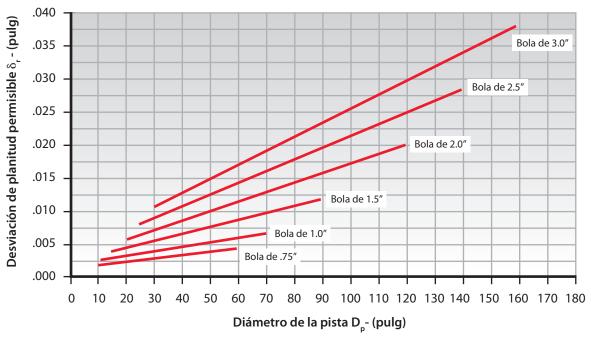


Figura 3-9

Kaydon no recomienda el uso de relleno o lainas para compensar la falta de planitud excesiva.

1.1.2.2 Pilotos

Algunas veces se utilizan pilotos para la localización exacta del rodamiento o para ayudar en la retención de este. Si se utilizan, deber ser redondos y estar dimensionados en forma precisa para que no deformen el rodamiento. También se debe tomar en consideración su excentricidad y la tolerancia de posicionamiento en relación con cualquier patrón de orificio utilizado en la estructura y la interacción con el anillo del rodamiento. Kaydon puede proporcionar el dibujo aplicable del conjunto del rodamiento que incluya las tolerancias de interacción.

1.1.2.3 Orificios

Los orificios de montaje y los orificios guía, si existen, deben estar dentro de las tolerancias de localización verdadera requerida para evitar la deformación del rodamiento debido a la interferencia. La tolerancia de localización del orificio de montaje debe contar para la excentricidad del patrón del orificio con relación a cualquier diámetro piloto. Los orificios de lado a lado deben ser compatibles con la tolerancia de localización y de un diámetro equivalente a

los del anillo del rodamiento correspondiente. Kaydon puede proporcionar el dibujo pertinente de ensamble del rodamiento que incluya las características y tolerancias de interacción.

Los rodamientos nunca deben usarse como plantillas de perforación. Deben utilizarse como plantillas para transferir la localización del orificio con la condición de que se tenga cuidado para no deformar el rodamiento. Es más probable que ocurra la deformación en rodamientos que tengan secciones de anillo más delgadas.

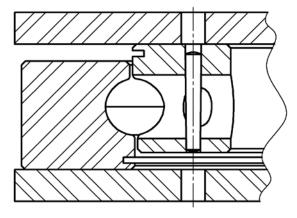
1.1.3 Protección

Lo rodamientos Kaydon están diseñados para soportar los ambientes normales de operación. Si la estructura superior no proporciona cobertura completa para el rodamiento, se recomiendan un sello o una protección separada. Los engranajes expuestos deben estar cubiertos si van a estar expuestos a condiciones extremadamente sucias. Las protecciones y tolvas se deben diseñar con puertas con cubiertas, tapones u otros medios de acceso al rodamiento para fines de mantenimiento.

Para mejorar aún más la protección, Kaydon puede proporcionar opciones de pintado o galvanizado según se requiera.

1.1.4 Acceso (para instalación y mantenimiento)

Como todos los componentes mecánicos en una máquina, los rodamientos deben estar accesibles para que se les pueda dar mantenimiento en forma adecuada. Se debe considerar lo siguiente.


Los pernos de montaje requieren revisión periódica y posible reapriete. El acceso a cada perno de montaje debe estar disponible fácilmente. La falta de mantenimiento adecuado a los pernos de montaje puede dar como resultado la falla y lesiones a alguna persona en las áreas cercanas.

Se requiere la lubricación del engranaje y de los componentes internos, y se debe proporcionar el acceso conveniente a las graseras del engranaje y el rodamiento. Se recomienda agregar líneas remotas al rodamiento para permitir la rotación a medida que la grasa se introduce en las pistas.

Puede haber raras ocasiones donde se desee inspeccionar las pistas del rodamiento y los componentes internos. Esto solo lo debe intentar personal calificado debido a la posibilidad de que el rodamiento y las estructuras se separen. Esto puede dañar los componentes y ocasionar lesiones o la muerte de alguna persona en las áreas cercanas.

Esta inspección se puede lograr en las coronas de orientación típicas mediante el desmontaje el tapón de carga, excepto en los diseños de tres hileras de rodillos.

Aunque el desmontaje del tapón de carga anule la garantía, esto puede ser necesario. Para dar cabida al acceso al pasador de retención para el tapón de carga, el diseñador debe incluir holgura adicional u orificios de acceso arriba y debajo del pasador de retención. Consulte la Figura 3-10.

Orificios de acceso para el tapón de carga

Figura 3-10

1.1.5 Sujeción

El método de sujeción de los rodamientos Kaydon a la estructura de apoyo afecta en forma significativa su diseño. El método preferido es utilizar pernos en los dos anillos. Si requiere ayuda con aplicaciones donde se deba realizar la sujeción para uno de los anillos mediante soldadura, póngase contacto con Kaydon.

1.1.5.1 Pernos

El arreglo preferido de atornillado es un círculo completo de sujetadores espaciados uniformemente que pasan a través de los orificios en las dos pistas del rodamiento. Esto beneficia al rodamiento y a los pernos. Las pistas del rodamiento se refuerzan con la tensión del perno. La mayor longitud de agarre resultante del perno permite un pretensado más preciso y uniforme, reduciendo la carga de fatiga. Sin embargo, no siempre es práctico tener todos los orificios de montaje igualmente espaciados en forma exacta en todos los diseños, debido a la interferencia con las estructuras de apoyo o los soportes. En tales casos, el espaciamiento entre pernos adyacentes se puede desplazar unos cuantos grados hacia cualquier lado para dar cabida a los accesorios de montaje y al conjunto. Se recomienda realizar pruebas, ya que este es el único método preciso para determinar las cargas del perno, la validación de la configuración de la unión completa y el procedimiento de montaje.

El arreglo del perno, la calidad, el tamaño y el acoplamiento de la rosca de los pernos son responsabilidad del diseñador y del fabricante del equipo por las siguientes razones:

- No existe método aceptado universalmente para analizar las fuerzas impuestas sobre los pernos en una unión de corona de orientación sujeta a cargas de momento.
- La rigidez, la uniformidad y el diseño final de las estructuras a las cuales se sujeta el rodamiento tienen un grado extremadamente alto de influencia sobre la carga en los sujetadores. Solo el diseñador o el fabricante del equipo pueden controlar esto.
- La calidad de los accesorios de montaje de sujeción, el método de aplicación de tensión, la dureza de las superficies debajo de las cabezas de los pernos y el uso de lubricante en la rosca son factores críticos sobre los cuales el fabricante del equipo tiene control.

Sugerimos que la selección de los pernos se deba realizar con el consejo y ayuda del proveedor de los accesorios de montaje de sujeción, ya que la calidad del perno, el método recomendado de pretensado y el mantenimiento varían ampliamente. La atención a los detalles como el radio de la cabeza/del filete del cuerpo, la forma de la rosca, el acabado, las asperezas de la superficie y la ausencia de grietas y otras fallas destructivas posibles son muy importantes para la seguridad del equipo y de todo el personal en las áreas cercanas. La importancia del pretensado adecuado y uniforme es evidente a partir de la proliferación y el avance tecnológico de dispositivos como:

- Indicadores de vuelta de tuerca
- Arandelas indicadoras de precarga
- Torquímetros con sensores de "cedencia" integrados
- Elongadores hidráulicos de pernos
- Equipo de medición ultrasónico
- Para ayudar al diseñador en el dimensionado inicial, se puede utilizar la siguiente fórmula para calcular la carga aproximada sobre el perno con la carga más pesada. Este método se basa en la experiencia pasada y los resultados de cedencias que han probado ser

satisfactorias para la mayoría de las aplicaciones. Este es análogo al método que Kaydon utiliza para determinar la carga sobre el elemento rodante con la carga más pesada dentro de un rodamiento.

Kaydon no otorga ninguna garantía, expresa o implícita, sin importar lo adecuado de los pernos. La única forma segura de determinar la carga real es por medio de pruebas, lo cual es altamente recomendable.

$$R_b = \begin{array}{ccc} & 12 \cdot M_k \cdot F_f & \pm & F_a \\ \hline & L \cdot n & & n \end{array}$$

$$*F_s = \frac{\text{Clasificación de carga de prueba del perno}}{R_b}$$

M_L = Carga de momento, (Ib-pie)

F_f = Factor de flexibilidad. Utilice 3 para rodamientos y estructuras de apoyo de rigidez promedio.

 $F_a = Carga axial, (lb)$

Si la carga es en tensión, el signo es +. Si la carga es en compresión, el signo es –. Consulte las Figuras 2-2 y 2-3.

L = Diámetro del círculo de pernos, (pulg)

n = Número total de pernos distribuidos uniformemente

 $R_b = Carga total sobre el perno con la carga más pesada, (lb)$

*F_s = Factor de seguridad de los pernos. Valor mínimo recomendado = 3

Carga de prueba del perno

SAE J429, Grado 8 y ASTM A490; Serie con rosca gruesa

Diámetro del perno (pulg)	Carga de prueba (lb)
1/2	17,000
5/8	27,100
3/4	40,100
7/8	55,400
1	72,700
1 - 1/8	91,600
1 - 1/4	116,300
1 - 1/2	168,600

Si usted determina que se requiere la alteración del patrón del orificio de montaje para su rodamiento, Kaydon está disponible para ayudarle a seleccionar un patrón de orificio de montaje para el rodamiento específico.

La siguiente es una lista de recomendaciones adicionales relacionadas con los pernos y su incorporación en el diseño final del equipo. Los conceptos listados a continuación no incluyen todos los necesarios y se recomienda el estudio adicional sobre el tema. Estas recomendaciones pretenden proporcionar al diseñador una buena base desde la cual partir.

- Pernos de alta resistencia con roscas gruesas y cabezas hexagonales de acuerdo con la norma SAE J429, Grado 8 o ASTM A490/A490M o ISO 898-1, Grado 10.9 con tensión aplicada al 70% de su resistencia de cedencia.
- Donde sea aplicable, tuercas hexagonales con rosca gruesa de acuerdo con la norma SAE J995, Grado 8 o ASTM A563, Grado DH o ISO 898-2, Clase 10.
- Arandelas planas redondas endurecidas de acero de acuerdo con la norma ASTM F436 debajo de la cabeza del perno y también de la tuerca.
- Uso de accesorios de montaje que identifiquen al fabricante, así como las designaciones correctas del grado SAE, ASTM o ISO.
- La relación de la longitud de sujeción de la unión (distancia de la parte inferior de la cabeza del perno a la primera rosca de acoplamiento) al diámetro nominal del perno debe ser igual a 3.5 o mayor. Esta relación tiene un efecto significativo en la incrustación y el potencial de pérdida de tensión del perno y la falla prematura. Una relación más elevada es menos propensa a dar como resultado la pérdida de tensión del perno. Las relaciones más bajas pueden proporcionar un valor inaceptable y requerir de la inspección más frecuente de los pernos para garantizar la tensión correcta. Se requieren pruebas para la validación.
- Las roscas de los pernos deben terminar antes de la cabeza cuando menos una distancia equivalente al diámetro del cuerpo.
- Misma longitud de sujeción o de agarre de todos los pernos de montaje en un anillo dado.
- La longitud de acoplamiento de la rosca entre el perno y la estructura de acero de montaje debe ser de cuando menos 1.25 veces el diámetro nominal del perno.
- Se debe utilizar un perno en cada orificio de montaje.

- Debe haber un mínimo de 6 roscas libres (no acopladas) en la porción sometida a tensión del perno.
- Se recomienda la realización de pruebas preliminares para validar que el método de aplicación de tensión al perno alcance los resultados deseados antes de cualquier prueba del equipo.

Los pernos de cabeza hueca de alta resistencia (ASTM A574) no son los preferidos pero se han usado con éxito en aplicaciones de corona de orientación. Estos pernos de alta resistencia tienen un diámetro de cabeza menor lo cual requiere menos espacio; sin embargo también tienen menos área debajo de la cabeza. Esta área reducida aumenta el potencial de mayor variación en la tensión final del perno debido a la incrustación y el asentamiento. Los pernos de cabeza hueca de alta resistencia se deben utilizar junto con una arandela y tuerca endurecidas. La tuerca se debe girar para alcanzar la tensión final del perno. Si es posible, utilice una arandela endurecida debajo de la cabeza, así como de la tuerca, para reducir al mínimo la incrustación, el asentamiento y la pérdida de tensión del perno lo que podría dar como resultado la falla prematura de este.

Las arandelas que indican la tensión calibrada son aceptables.

NO se recomienda utilizar arandelas de presión, debido a las variaciones potencialmente significativas en la resistencia a la fricción, la incrustación y la pérdida de tensión del perno, lo que conduciría a la falla prematura de este. Además, **NO** se recomienda el compuesto de bloqueo en las roscas, diseñado para evitar el aflojamiento. Como se menciona en la sección de mantenimiento, los pernos requieren inspección frecuente para verificar la tensión correcta. El método más común que se utiliza para cumplir este requerimiento es la medición del torque de apriete del perno. El uso de compuestos de bloqueo puede conducir a la falsa conclusión de que el perno tiene la tensión deseada. La pérdida de la tensión correcta puede conducir a la falla prematura del perno, al desmontaje del rodamiento y estructura, al daño de los componentes y a lesiones o la muerte de alguna persona en las áreas cercanas.

1.1.5.2 Soldadura

La sujeción de los rodamientos mediante soldadura no es la favorita y se limita a aplicaciones nuevas en condiciones poco usuales. Si se requiere ayuda adicional, le sugerimos que se ponga en contacto con el departamento de ingeniería de Kaydon para estas aplicaciones.

1.2 Acoplamiento de piñón y engranaje1.2.1 Consideraciones de diseño del piñón

Si se ha seleccionado un rodamiento con un engranaje integrado, el diseñador de la máquina debe trabajar con un fabricante de piñones para seleccionar el piñón de acoplamiento adecuado. Es importante estar consciente y considerar todas las circunstancias potenciales de operación que podrían perjudicar la vida del piñón y el engranaje.

Con frecuencia se selecciona un piñón apoyado solo en un extremo para acoplarse con las coronas de orientación. Esto se conoce comúnmente como un piñón en cantiliver. Utilice este tipo de arreglo siempre que existan cargas elevadas sobre el diente del engranaje que requieran que el diseñador considere modificaciones del piñón que no se utilizan comúnmente con transmisiones estándar de engranaje. Sugerimos que se deben considerar las siguientes modificaciones del diseño del engranaje cuando se seleccione un piñón de acoplamiento.

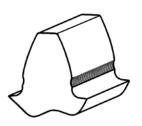
Modificación del adendum (cambio de perfil).

Es muy importante para los piñones que tienen menos de 15 dientes para una forma de diente de involuta Stub y 19 dientes para una forma de diente de involuta de profundidad completa evitar socavados, diseño de diente debilitado y evitar interferencia de la punta o de la involuta.

Perfil y alivio de la punta. Consulte las Figuras 3-11 y 3-12.

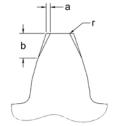
Las cargas dinámicas más elevadas, el piñón con menos dientes y el apoyo solo en un extremo del piñón aumentan el potencial de flexión del engranaje y de los dientes del piñón durante la operación. Estas condiciones tienen una tendencia a generar desgaste (desgaste por rozamiento) en el adendum del diente del engranaje, sin importar que los dientes tengan los perfiles correctos y la geometría teóricamente compatible. El desgaste por rozamiento genera partículas metálicas de desgaste y debilita el diente del engranaje. Esto puede perjudicar la vida del engranaje y del piñón dependiendo de las circunstancias de la operación.

Formación de corona o cambio del espesor del diente a lo largo de su ancho.


Esto se considera una buena práctica para engranajes con carga muy elevada, ya que permite una mejor distribución de los esfuerzos a lo largo de la cara del diente. Para situaciones con montaje del piñón en cantiliver, se debe considerar el descentramiento de la corona para tomar en cuenta la flexión del piñón y la transmisión, y proporcionar una distribución más uniforme del esfuerzo. Generalmente la sección más gruesa a lo largo de la cara del diente está descentrada hacia el extremo sin apoyo del piñón.

Endurecimiento de la superficie del piñón.

El piñón experimenta más ciclos de operación que los dientes del engranaie. Por lo tanto, requiere de una vida de resistencia más alta de la superficie. Esto se logra mediante el endurecimiento o el endurecimiento selectivo. Cuando es a través del endurecimiento, se debe tener cuidado para evitar que los dientes del piñón se vuelvan demasiado duros y quebradizos para la aplicación planeada y el engranaje de acoplamiento. El endurecimiento selectivo del piñón es una alternativa cuando la dureza y la ductilidad de la superficie son los principales problemas del diseño. Un patrón de dureza que termina en el área del filete tiene significativamente menos resistencia que una que fluye completamente alrededor de filete y hacia arriba de ambos flancos. Los métodos de tratamiento térmico para lograr esto incluyen el carburizado, el nitrurizado o el endurecimiento por inducción. En todos los casos, es necesaria la evaluación del patrón de dureza, incluida el área de transición, para determinar si esta es adecuada para el uso planeado.


Calidad

La calidad del piñón debe ser equivalente a la del engranaje de acoplamiento o mejor que la de este.

Desgaste por rozamiento en el dedendum

Figura 3-11

Punta del flanco y alivio del perfil Figura 3-12

1.2.2 Backlash entre engranajes

Para la mayoría de las aplicaciones de corona de orientación acoplada se requiere el contacto entre engranajes. Esto es para dar cabida a las tolerancias de manufactura de los engranajes, de las estructuras de montaje, de lubricación, de expansión térmica y de flexión de los componentes bajo cargas dinámicas. Consulte la Figura 3-13.

Contacto entre engranajes del conjunto de engranaje

Figura 3-13

En relaciones altas de engranaje, el más grande de los dos engranajes de acoplamiento normalmente tiene sus dientes adelgazados para dar cabida a esto y el más pequeño se mantiene en el valor nominal para elevar al máximo la resistencia de su diente. La cantidad de adelgazamiento del diente o la tolerancia del contacto entre engranajes se muestran en los dibujos de Kaydon, los cuales pueden obtenerse poniéndose en contacto con Kaydon. Los rangos típicos de contacto entre engranajes se muestran en la Tabla 3-14. Para los engranajes de módulo, utilice el diámetro de paso y el paso diametral aproximados del engranaje equivalente como se muestra en la tabla.

El contacto entre engranajes se debe medir justo dentro de cada extremo del piñón y el engranado para verificar que se obtiene la alineación correcta. La alineación deficiente puede dar como resultado el desgaste prematuro del diente y su ruptura. Considere cualquier formación de corona de los dientes del piñón al evaluar la alineación.

$$m = \frac{25.4}{P_d} = m\acute{o}dulo$$

El diseñador o el fabricante necesitan determinar utilizar una distancia del centro fija o ajustable. Los factores que influyen en esta decisión son el nivel de habilidad de los ensambladores, el tiempo de instalación, el mantenimiento y la rentabilidad. El diseñador también debe sopesar el potencial para mayor vida del engranaje frente al costo adicional en el que se incurre requiriendo tolerancias de manufactura más estrictas o el diseño para una distancia del centro ajustable.

Tabla 3-14

D'/matura da mara	Contacto entre		Contacto en	tre engranajes m	áximo (pulg)	
Diámetro de paso de engranajes, D ₂	engranajes mínimo, J			Paso diametral (P _c	1)	
(pulg)	(pulg)		1.75		2.5	3, 4, 5
20	0.014	0.029	0.027	0.025	0.023	0.022
30	0.015	0.030	0.028	0.026	0.024	0.023
40	0.016	0.031	0.029	0.027	0.025	0.024
60	0.018	0.033	0.031	0.029	0.027	0.026
80	0.020	0.035	0.033	0.031	0.029	0.028
100	0.022	0.037	0.035	0.033	0.031	0.030
120	0.024	0.039	0.037	0.035	0.033	0.032

Consulte la Sección 3 de la versión del sitio Web del catálogo para las adiciones pendientes a esta tabla.

1.3 Ejemplos de montaje

Los rodamientos Kaydon se pueden diseñar para adaptarse a una variedad de arreglos de montaje. Las siguientes son ilustraciones de algunos arreglos básicos. Estos pueden variar para adaptarse al requerimiento de una aplicación específica. Esas variaciones incluyen los tipos de orificios, la localización y el número de orificios de lubricación, la omisión de engranajes integrados y la incorporación de sellos especiales.

Las estructuras de montaje que se muestran tienen solo fines ilustrativos. Los detalles importantes del diseño como el espesor de la placa de montaje, la localización y el número de miembros de rigidez y la longitud de los pernos los debe determinar el diseñador del equipo como se detalla en las secciones previas.

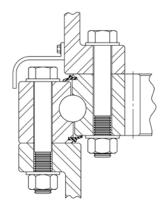


Figura 3-15

El piñón se conecta al soporte de la pista externa fija y hace girar la estructura superior apoyada en la pista interna. Una tolva sobre el sello externo y los pernos evita la contaminación bajo condiciones extremas.

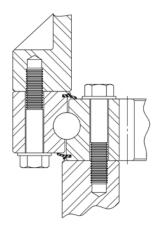


Figura 3-17

El piñón se conecta a la estructura superior que gira conducida por la pista externa. La ubicación del engranaje en el anillo interno proporciona protección contra las condiciones severas externas.

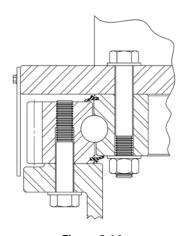


Figura 3-16

La pista interna soporta la estructura superior que gira con el piñón. Una tolva externa protege los dientes del engranaje en la pista externa fija.

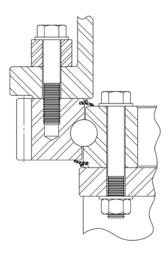


Figura 3-18

El piñón se conecta a la pista interna fija y hace girar la pista externa acoplada conduciendo la estructura superior.

2. Consideraciones de instalación y mantenimiento (guía para el fabricante del equipo)

2.1 Manejo

Las coronas de orientación, como cualquier otra parte de la máquina, requieren de manejo cuidadoso. Utilice las prácticas de operación segura y la observación de todos los reglamentos legales pertinentes al manejar, limpiar y transportar según se requiera. Se recomienda el uso de guantes siempre que se maneje el rodamiento.

Transporte los rodamientos solo en posición horizontal, de preferencia asegurados firmemente en tarimas de envío o en un contenedor. Al levantar un rodamiento, utilice pernos de argolla en los orificios de montaje o eslingas no metálicas en tres puntos distribuidos uniformemente alrededor del rodamiento. Evite cualquier aceleración súbita o impacto. Si el rodamiento se debe voltear, utilice eslingas de tejido de nailon o equivalentes. No utilice cadenas o eslingas de malla metálica en contacto con el rodamiento.

2.2 Almacenamiento

Las coronas de orientación Kaydon se llenan en la fábrica con grasa para uso general, a menos que el cliente especifique lo contrario y se sellan para descartar la materia extraña ordinaria. Mantenga el rodamiento lleno como se recibió originalmente y en posición horizontal hasta que se hayan realizado todas las preparaciones para su instalación. Si es necesario apilar los rodamientos, se debe utilizar entre los rodamientos una capa intermedia estable con resistencia adecuada para soportar el peso. La altura total apilada no debe exceder tres pies. Recomendamos que no apile más de dos si el rodamiento tiene un diámetro de cuatro pies o mayor.

No se recomienda el almacenamiento a la intemperie. Si el rodamiento no se instala dentro de un año a partir de su recepción, la grasa se debe purgar y reemplazar con grasa nueva. Las superficies externas de las coronas de orientación, incluido el engranaje, están cubiertas con aceite protector para proporcionar protección nominal durante el almacenamiento.

Sugerimos que avise a Kaydon si se anticipan períodos prolongados de almacenamiento de manera que los rodamientos se puedan empacar adecuadamente.

2.3 Instalación

Es importante reconocer el papel vital del rodamiento/ engranaje y de los medios para asegurarlo en el equipo, ya sea con pernos o soldaduras.

Es necesario preparar instrucciones detalladas y claras para el instalador. Cuando se utilizan pernos como medios de sujeción, es necesario realizar pruebas para validar que el método de pretensado del perno alcance los resultados deseados. Confirme que los pernos tengan el estándar de calidad correcto y la identificación del fabricante como lo prescribe el diseñador.

Si el rodamiento se va a sujetar mediante soldadura, realice las pruebas necesarias para certificar que la unión especificada será lo suficientemente fuerte para sujetarse en forma segura el rodamiento. Examine en busca de salpicaduras de soldadura, melladuras y rebabas y elimínelas. Si las superficies se han pintado, elimine la pintura por completo.

2.3.1 Preparación

La instalación del conjunto de rodamiento y engranaje se debe efectuar en un área limpia, seca y bien iluminada. Las superficies de montaje y los pilotos de las carcasas deben estar maquinados y libres de pintura, virutas, suciedad y pelusa. Incluso el material "suave" atrapado entre las superficies de montaje y del rodamiento pueden dar como resultado puntos altos y afectar el desempeño del rodamiento y del perno. Cuando esto se haya presentado examine para detectar salpicadura de soldadura, pintura, melladuras y rebabas; elimínelas y vuelva a limpiar. Las caras de montaje necesitan estar maquinadas y acuerdo con los límites prescritos en la Parte 1, Párrafo 1.1.2

Confirme que el rodamiento y todos los accesorios de montaje necesarios y correctos se encuentren en el lugar antes de iniciar la instalación. Verifique que los pernos y los accesorios del montaje son del tamaño, diseño, acabado y calidad especificados por el diseñador. Los pernos deben tener la identificación adecuada para el estándar de calidad requerido. Utilizar pernos que no cumplen con lo prescrito, puede conducir al desempeño insatisfactorio del rodamiento, falla prematura y a un ambiente de trabajo potencialmente mortal. Consulte la Parte 1, Párrafo 1.1.5.1

2.3.2 Posicionamiento

Si un anillo tiene un orificio piloto o guía, este se debe posicionar y montar primero.

Considere la alineación del contacto entre engranajes mínimo del engranaje en la estructura para que se pueda realizar cualquier ajuste necesario.

Identifique las zonas de carga máxima en las estructuras de apoyo en los cuales el rodamiento se asegurará. Cuando existan dudas, consulte al diseñador del equipo para obtener instrucciones.

Examine e identifique cualquier daño en el empaque antes de desenvolver el rodamiento; después este se debe limpiar e inspeccionar.

No exponga el área del sello o cualquier otra abertura del rodamiento a limpieza a presión.

Utilice solo material de limpieza compatible con el material del sello y evite la entrada de desechos u otro material en el rodamiento. Inspeccione visualmente y confirme que no exista daño en el rodamiento, el engranaje, los sellos o las graseras.

Elimine todas las rebabas pequeñas de las superficies de montaje que se pudieran haber generado durante el envío o el manejo. Utilicen una lima de mano, teniendo cuidado de eliminar solo el material necesario para garantizar el contacto completo de la superficie del rodamiento con la superficie de montaje del equipo. Asegúrese de que se limpien todas las superficies.

Recomendamos que el rodamiento no se desmonte sin la aprobación expresa y las instrucciones de Kaydon. El desmontaje del tapón del orificio de carga anula la garantía.

Levante o eleve el rodamiento a su posición, colocando el anillo previsto sobre su estructura de apoyo.

Alinee los orificios de montaje y oriente el anillo de manera que el tapón de carga y/o la localización del claro de endurecimiento (identificado por una "G") estén a 90° de la zona con la carga más pesada.

Confirme que las graseras o los orificios de engrasado se encuentran ubicados para fácil acceso o alineados con las líneas de lubricación.

Utilizando un calibrador, verifique que el rodamiento se encuentre completamente apoyado por la estructura de montaje. Si no es así, determine la causa y corríjala.

2.3.3 Aseguramiento

Para la buena distribución de carga y la operación de torque pareja y baja, el rodamiento debe estar tan redondo como sea posible al apretar los pernos. El siguiente procedimiento se proporciona como una ayuda para lograr este objetivo.

Instale las arandelas y tuercas, y apriete los pernos con la mano en el anillo apoyado de acuerdo con las instrucciones del diseñador. Asegúrese de que no existe interferencia o frotamiento de los pernos en ninguno de los orificios. No deforme el rodamiento para insertar algún perno. La interferencia puede ocasionar resultados imprecisos y conducir a la falla prematura del rodamiento y los pernos.

Aplique una carga de empuje centrada moderada en el rodamiento y tome nota del torque requerido para hacerlo girar.

Apriete todos los pernos de acuerdo con las instrucciones del diseñador del equipo. No seguir las instrucciones del diseñador del equipo podría dar como resultado el desgaste prematuro o la falla catastrófica del rodamiento y dañar el equipo, lesionar al personal u ocasionar la muerte.

Un método común es el uso del apriete de patrón de estrella siguiendo la secuencia a continuación. Esto normalmente se realiza en 3 etapas de aproximadamente el 30%, 80% y 100% del nivel final de torque de apriete o tensión prescrito por el diseñador del equipo.

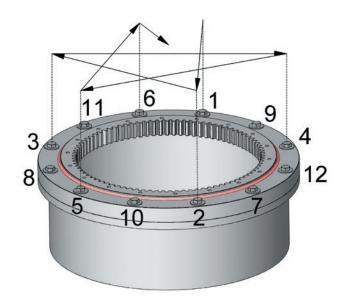


Figura 3-19

Gire el anillo del rodamiento sin asegurar varias veces después de cada etapa, verificando para detectar zonas apretadas o un aumento significativo en el torque respecto al observado inicialmente. Cualquiera de estos indica que el rodamiento está deformado. Determine y corrija la causa.

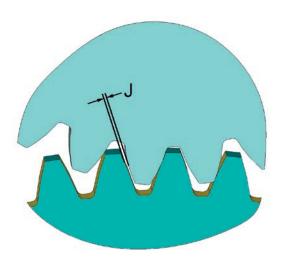
Retire la carga de empuje centrada aplicada previamente en el rodamiento y antes de asegurar el otro anillo.

Posicione la otra estructura de apoyo del rodamiento en el anillo del rodamiento sin asegurar.

Esta estructura de apoyo debe tener un número mínimo de componentes conectados para mantener el peso y la carga de momento bajos para que la operación de aplicación de tensión del perno no se vea afectada en forma adversa.

Alinee los orificios de montaje y oriente el anillo de manera que el tapón de carga y/o la localización del claro de endurecimiento (identificado por una "G") estén a 90° de la zona con la carga más pesada.

Utilizando un calibrador, verifique que el rodamiento soporte completamente la estructura de montaje. Si no es así, determine la causa y corríjala.


Inserte y apriete los pernos en el segundo anillo como se efectuó en el anillo asegurado. Continúe haciendo girar y verificando el rodamiento para detectar atascamiento o torque excesivo durante esta operación.

Complete la instalación de todos los componentes de rotación de peso significativo y verifique la libertad de giro del rodamiento. El nivel de torque, la variación o la vibración excesivos indican alguna condición de instalación o componente no satisfactoria.

Según se permita, inspeccione los sellos nuevamente para detectar daño.

2.3.4 Backlash entre engranajes y alineación

Después del montaje del rodamiento, monte el piñón de acoplamiento. Revise el contacto entre engranajes de los engranajes. Se deben colocar piñones en centros ajustables para el contacto entre engranajes correcto. Haga esto en el punto de contacto entre engranajes mínimo en el engranaje, identificado con pintura amarilla en el espacio del diente y en los dos extremos para confirmar que exista la alineación prescrita. Si cualquiera de estos no está como lo prescribe el diseñador, determine la causa y corríjala. Consulte la Figura 3-20.

Contacto entre engranajes del engranaje

Figura 3-20

2.4 Post-instalación

Cuando el equipo se ha ensamblado completamente, y antes de probarlo, revise la tensión en el perno para garantizar que cumple con lo especificado por el diseñador. El equipo se debe orientar para generar la carga de momento o radial tan pequeña como sea posible en el rodamiento para evitar lecturas imprecisas. Documente esta orientación para que se pueda utilizar para todas las inspecciones futuras de perno. Cualquier pérdida de pretensado se debe determinar y eliminar.

Mida y registre la inclinación inicial del rodamiento (holgura) del equipo siguiendo el lineamiento que se proporciona en el Párrafo 2.5.7.

Durante y después de las pruebas de validación, revise la tensión del perno con la orientación del equipo como se realizó y documentó previamente. Cualquier pérdida de pretensado se debe determinar y eliminar.

Siga el Párrafo 2.5.1 para los intervalos de lubricación del rodamiento y el engranaje durante las pruebas.

Vuelva a lubricar el rodamiento y el engranaje antes de entregar la máquina. Introduzca grasa nueva en el rodamiento hasta que la grasa se observe que sale debajo de cualquier sello. Haga girar el rodamiento varias veces para asegurar un llenado completo. Repita cada 6 meses con el equipo en reposo o como lo recomiende el diseñador del equipo.

2.5 Mantenimiento

Mientras que las coronas de orientación Kaydon requieren atención mínima, la que se le preste rendirá grandes dividendos en larga duración, alto desempeño y servicio sin problemas.

2.5.1 Lubricación

2.5.1.1 Rodamiento

Se recomienda la lubricación del rodamiento cada 100 horas de operación para aplicaciones de rotación u oscilación relativamente lenta como en retroexcavadoras, excavadoras y grúas o como lo especifique el diseñador. En maquinaria con movimiento más rápido o rotación continua como zanjadoras, perforadoras y distribuidoras de material, el rodamiento se debe lubricar diariamente o cada 8 horas de servicio las 24 horas. Consulte la Sección 3, página 44 para la explicación adicional sobre los lubricantes que se deben usar.

El equipo en reposo no se debe descuidar. La grasa que se seca y "transpira", debido a los cambios de temperatura, puede ocasionar condensación dentro del rodamiento. Ya sea que se use o no, se debe introducir grasa en el rodamiento cada 6 meses. Después, el rodamiento se debe hacer girar unas cuantas revoluciones para cubrir todas las superficies con grasa nueva.

2.5.1.2 Engranaje

Existe una tendencia a prestarle mucho más cuidado al rodamiento que al engranaje. Sin embargo, la acción de acoplamiento y la posición usual del engranaje tiende a purgar el lubricante, por lo tanto, el engranaje se debe volver a engrasar con frecuencia con una cantidad pequeña de lubricante. Un engranaje con buen mantenimiento proporcionará servicio prolongado, suave y silencioso. Se recomienda que la grasa se introduzca en el punto de acoplamiento del piñón y el engranaje cada 8 horas de operación lenta o intermitente y más frecuentemente para aplicaciones de rotación rápida o continua. Consulte la Sección 3, página 44 para la explicación adicional sobre los lubricantes que se deben usar.

2.5.2 Pernos

La naturaleza cíclica de la carga de los pernos de montaje eleva la posibilidad de aflojamiento o la deformación no elástica de las roscas y otras superficies sometidas a esfuerzo. Con el equipo en la misma

orientación que la prueba inicial durante la instalación, el usuario final debe revisar los pernos dentro de las primeras 200 a 300 horas de operación. Si se detecta alguna pérdida de apriete, se debe determinar y eliminar el origen. Los pernos se deben revisar nuevamente después de cada 200 a 300 horas adicionales de operación hasta que ya no se detecte aflojamiento, momento en el cual la frecuencia de inspección se puede extender como lo especifique el diseñador.

2.5.3 Sellos

Los sellos se deben inspeccionar durante el mantenimiento de rutina como lo recomiende el diseñador, pero el intervalo no debe exceder de 6 meses. Revise para detectar rasgaduras, roturas u otras señales de daño. Dependiendo de la frecuencia de lubricación y de la protección, puede ser necesario limpiar algunas áreas para realizar esta inspección. Elimine con cuidado toda la acumulación de desechos alrededor del sello y lubrique el rodamiento. Debe haber un pequeño cordón de grasa alrededor del borde del sello indicando que el rodamiento está recibiendo suficiente lubricación.

2.5.4 Limpieza

La limpieza se debe realizar con material compatible con los sellos, siguiendo todas las instrucciones de los fabricantes para el uso, almacenamiento y disposición. Tome medidas precautorias de seguridad y utilice las prácticas de operación segura, observando todos los reglamentos legales pertinentes en su manejo.

No exponga el área del sello o cualquier otra abertura del rodamiento a limpieza a presión.

2.5.5 Ruido, aspereza y vibración

El monitoreo continuo del ruido, la aspereza y la vibración del equipo durante la operación puede ayudar a la detección temprana de componentes deficientes o inseguros, falla estructural o desempeño deficiente del rodamiento. El operador debe estar muy familiarizado con las condiciones típicas de operación que genera el equipo. Investigue y solucione cualquier cambio observado.

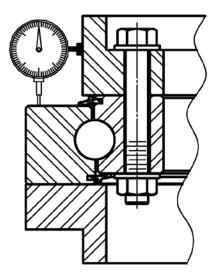
2.5.6 Torque

El monitoreo del torque de rotación y de cualquier variación se puede utilizar no solo para determinar la condición de un

rodamiento, sino que también pueden proporcionar en forma temprana la indicación de un problema del engranaje, de la unión o de otra naturaleza estructural. Para determinar cualquier cambio en el torque, primero es necesario registrar una medición inicial realizada de la mejor manera después de probar y antes de que el equipo entre en servicio. Revise el torque cada 700 horas de operación o cada 12 meses, lo que ocurra primero, y solucione la causa de cualquier cambio.

2.5.7 Inclinación (holgura)

La holgura interna del rodamiento aumentará con el desgaste de la pista y el elemento rodante. La velocidad de desgaste, junto con otros criterios clave del desempeño del rodamiento posibilitarán al usuario final monitorear y determinar la condición del rodamiento y anticipar el momento en que se requiera el reemplazo. Una medición del movimiento axial del rodamiento (inclinación) es un indicador confiable de la holgura interna del rodamiento.


Para determinar la cantidad de desgaste que ha ocurrido, es necesario realizar una medición inicial de la inclinación antes de poner el equipo en servicio. Se requiere la medición continua de la inclinación, siguiendo el mismo procedimiento documentado, para ayudar al usuario del equipo a determinar el momento en que un rodamiento requiere desmontaje. Se deben realizar mediciones de inclinación cada 700 horas de operación o cada 12 meses, lo que ocurra primero. Siempre que el "aumento en inclinación" alcance el 75% del que se muestra en la Tabla 3-22, reduzca la frecuencia de medición a 300 horas. A medida que la velocidad de desgaste aumente, el período entre mediciones debe disminuir como corresponda.

La siguiente información es un lineamiento para determinar la inclinación de un rodamiento.

Para realizar la medición de inclinación es necesario someter el rodamiento a una inversión completa del momento de carga eliminando toda la holgura de "un lado" pero sin exceder el 25% de la clasificación máxima del equipo. Póngase en contacto con Kaydon para analizar cualquier inspección alternativa.

- Oriente el equipo de manera que el rodamiento esté sujeto a un momento de carga.
- Marque en forma permanente el punto donde el indicador de carátula se va a posicionar para la medición

- en las estructuras giratoria y fija. Esto debe estar en línea con la carga principal o el momento de carga.
- Sin hacer girar el equipo, marque en forma permanente tres puntos adicionales en la estructura fija donde se van a tomar las mediciones futuras. Estos deben quedar en las ubicaciones resultantes en cuatro puntos totales separados 90°.
- Pegue un indicador de carátula en el punto inicial a un diámetro expuesto de un anillo, o tan cerca como sea posible, para que este registre el movimiento axial relativo entre los anillos del rodamiento. La exactitud del indicador de carátula debe de ser de 0.001" o mejor. Consulte la Figura 3-21.
- Ajuste el indicador de carátula a cero.
- Prepárese para tomar nota del movimiento y de la lectura final del indicador durante el siguiente paso.
- Sin hacer girar el anillo del rodamiento, aplique fuerzas sobre la estructura giratoria y los componentes de manera que esto ocasione una inversión completa del momento de carga sobre el rodamiento.
- Registre la lectura final del indicador de carátula.
- Retire la fuerza recientemente aplicada permitiendo que el momento de carga original esté presente en el rodamiento.
- El indicador de carátula debe regresar a cero. Si no lo hace, identifique y corrija la causa.
- Retire el indicador de carátula y alinee la marca permanente en la estructura giratoria con una de las tres marcas colocadas previamente en la estructura fija.
- Utilice el mismo procedimiento para registrar las mediciones en esta y en las dos ubicaciones restantes.
- Registre estas lecturas en el manual de servicio o en otro documento seguro para referencia futura.
- Compare las lecturas individuales con las mediciones iniciales registradas en la misma ubicación relativa. El aumento en la inclinación es la diferencia máxima observada.

Posición de la medición de inclinación

Figura 3-21

El aumento en la inclinación es la diferencia entre la última lectura tomada y la lectura inicial tomada al equipo al inicio del servicio. El aumento máximo permisible en la inclinación se muestra en la Tabla 3-22 de acuerdo con el tipo de elemento rodante y el diámetro. Reemplace el rodamiento cuando la diferencia exceda los valores que se muestran en la Tabla 3-22. Póngase en contacto con Kaydon si existen dudas adicionales.

2.5.8 Desmontaje y desecho

Si es necesario desmontar el rodamiento del equipo, proceda en orden inverso al usado para la instalación o lo más cercano posible en forma segura.

Póngase en contacto con un representante de Kaydon con respecto a la posibilidad de reparación o reemplazo. Se debe desechar de acuerdo con las regulaciones ambientales y otras locales aplicables al material usado.

TABLA 3-22

AUMENTO DE INCLINACIÓN PERMISIBLE (pulg)											
Elemento rodante											
Diámetro	Diámetro Tipo										
D _w	Bola	Rodillo									
(pulg)	(pulg)	(pulg)									
0.625	0.030	0.010									
0.750	0.035	0.012									
0.875	0.040	0.013									
1.000	0.045	0.016									
1.125	0.050	0.018									
1.250	0.055	0.020									
1.375	0.060	0.022									
1.500	0.065	0.024									
1.750	0.075	0.028									
2.000	0.080	0.032									
2.250	0.090	0.036									
2.500	0.100	0.040									
2.750	0.110	_									
3.000	0.115	_									

Donde D_w = Diámetro del elemento rodante

3. Mantenimiento (guía para el propietario y/o el usuario del equipo)

Las coronas de orientación requieren del mantenimiento rutinario para garantizar el desempeño óptimo y que se logre la vida determinada por el diseñador del equipo. Es importante seguir las recomendaciones de servicio y mantenimiento que contiene el manual de instrucciones del fabricante del equipo.

3.1 Antes de usar

Si no existe la seguridad de que el rodamiento/engranaje se ha lubricado dentro de los últimos seis meses o después de 100 horas de operación, introduzca grasa nueva de acuerdo con el manual de instrucciones del fabricante del equipo.

3.2 Durante el uso

- Vuelva a lubricar el rodamiento y el engranaje de acuerdo con las directrices en las instrucciones del fabricante del equipo.
- Inspeccione los sellos, asegurándose de que se encuentren en la posición correcta en las ranuras y que estén intactos.

Verifique la tensión de todos los pernos de montaje de acuerdo con el manual del propietario.

Esté alerta sobre los cambios en el torque, los sonidos inusuales y/o las vibraciones.

3.3 Grasas lubricantes para el anillo/los rodamientos de la corona de orientación y sus engranajes abiertos

La selección del lubricante que se usa en una corona de orientación y el engrane abierto integrado depende de la aplicación. El diseñador del equipo es el responsable de seleccionar un lubricante adecuado y debe consultar a un experto en tribología para que le ayude a seleccionar los lubricantes que se usarán en el diseño.

En la siguiente tabla se muestran algunos de los lubricantes más comúnmente usados. Estos se han utilizado en las coronas de orientación Kaydon operando en aplicaciones NORMALES. Consulte la Sección 2 de este catálogo para una explicación adicional. Esta lista contiene las grasas disponibles comercialmente de los principales fabricantes de lubricantes. Las propiedades lubricantes como la viscosidad del aceite, los aditivos para presión extrema, la resistencia al lavado del agua, la baja absorción de agua, la inhibición de la corrosión y la resistencia a la oxidación que se encuentran en esta lista de grasas proporcionan un ejemplo de algunas de las propiedades fácilmente disponibles en el mercado.

Las coronas de orientación Kaydon están pre-lubricadas con una grasa de aceite mineral a base de litio que cumple con la norma de consistencia NLGI No. 1 con aditivos para presión extrema, a menos que se especifique otra cosa. Toda la grasa insertada en el rodamiento debe ser compatible con esta grasa. Consulte la Sección 3 de este catálogo para el procedimiento y las frecuencias de lubricación sugeridos junto con otra información valiosa respecto a la instalación, el cuidado y el mantenimiento.

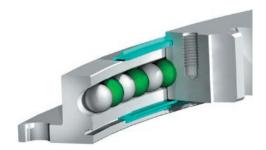
Tabla de grasas lubricantes adecuadas para las coronas de orientación Kaydon y sus engranajes abiertos

Fabricante	Grasa interna del rodamiento	Grasa de engranaje abierto		
ВР	Energrease LS-EP 1			
Castrol	HD Lithium 1	Open Gear 800		
Chevron	Dura-Lith EP 1	Chevron Open Gear Grease		
ExxonMobil	Mobilux EP 1	Mobiltac 375NC (tambor) Gearlube 375NC (lata rociadora)		
Klüber	Klüberplex BEM 41-141	Klüberplex AG 11-462		
Lubricants USA (FINA)	Marson EPL 1	Marson Open Gear Lubricant		
Shell	Alvania EP 1	Malleus GL		
Texaco	Multifak EP 1	Crater 2X (con base asfáltica)		

eccion,

Sección 4 Contenido Tablas y clasificaciones de rodamientos

	Número
	de página
Glosario	46
Serie RK Cuatro puntos de contacto	47-51
Serie HS Cuatro puntos de contacto	52-56
Serie HT Cuatro puntos de contacto	57-61
Serie MT Cuatro puntos de contacto	63-69
Piñones para las series RK, HS y MT	70
Serie KH Cuatro puntos de contacto	71-74
Serie XT Cuatro puntos de contacto	75-84
Serie DT Ocho puntos de contacto	85-94
Serie XR Rodillos transversales	95-101
Serie TR Tres hileras de rodillos	103-112


Glosario de abreviaciones y símbolos usados en esta guía

DI	MENSIONES DE RODAMIENTOS Y ENGRANAJ	ES
SÍMBOLO	CARACTERÍSTICAS	UNIDADES
α	Ángulo de presión de los dientes del engranaje	0
b ₂	Ancho de la cara de los dientes del engranaje	pulg
B _i	Tamaño del orificio en el anillo interno	pulg
B_o	Tamaño del orificio en el anillo externo	pulg
D_2	Diámetro de paso del engranaje	pulg
d_i	Diámetro interior del anillo interno	pulg
D_i	Diámetro interior en el anillo externo	pulg
D_o	Diámetro exterior del anillo externo	pulg
d_{o}	Diámetro exterior en el anillo interno	pulg
D_p	Diámetro de la pista del rodamiento	pulg
d_r	Diámetro interior en el anillo interno	pulg
D_r	Diámetro exterior en el anillo externo	pulg
D_w	Diámetro del elemento de rodamiento	pulg
FD	Engranaje de dientes rectos de profundidad completa con perfil evolvente (ref. ANSI B6.1-1968, R1974 o ISO 53:1998)	-
FS	Engranaje de dientes rectos truncados con perfil evolvente según sistema Fellows (ref. Manual de maquinaria, 18a. Edición)	-
Н	Altura del conjunto total del rodamiento	pulg
H_i	Altura del anillo interno	pulg
H_o	Altura del anillo externo	pulg
L _i	Círculo del perno en el anillo interno	pulg
L _o	Círculo del perno en el anillo externo	pulg
m	Módulo de los dientes del engranaje = 25.4/Pd	mm
n _f	Número de niples/conexiones de lubricación por plano	-
n _i	Número de orificios en el anillo interno	-
n _o	Número de orificios en el anillo externo	-
P _d	Paso diametral	
SD x ₂	Engranaje recto de involuta Stub (ref. ASA B6.1-1932) Coeficiente de modificación del addendum de los dientes del engranaje, (el símbolo "+" aumenta el espesor del diente en D2 y el símbolo "-" disminuye el espesor del diente en D2)	-
7	Número de dientes del engranaje	_
Z ₂	OPIEDADES DE RODAMIENTOS Y ENGRANAJ	FS
SÍMBOLO	CARACTERÍSTICAS	UNIDADES
C _{rm}	Clasificación de carga del momento	lb-pie
F_z	Carga máxima permisible del diente del engranaje	lb
G	Peso del conjunto del rodamiento	lb
$M_{\rm w}$	Torque de fricción del rodamiento, instalado y sometido a cargas	lb-pie

	DIMENSIONES DEL PIÑÓN	
SÍMBOLO	CARACTERÍSTICAS	UNIDADES
b ₁	Ancho de la cara	pulg
D ₁	Diámetro de paso	pulg
D _{i1}	Alojamiento de reserva	pulg
D _{o1}	Diámetro exterior	pulg
D _{r1}	Diámetro de la maza	pulg
L ₁	Longitud del piñón	pulg
P_d	Paso diametral	-
W	Tamaño de la cuña cuadrada, nominal	pulg
X ₁	Coeficiente de modificación del addendum	-
Z ₁	Número de dientes	-
	DATOS DE LA APLICACIÓN	
SÍMBOLO	CARACTERÍSTICAS	UNIDADES
f_a	Factor de servicio de la aplicación	-
F _a	Fuerza paralela al eje de rotación del rodamiento	lb
F _r	Fuerza perpendicular al eje de rotación del rodamiento	lb
M_k	Momento de inclinación alrededor de la línea central del rodamiento	lb-pie
N	Velocidad de rotación	rpm
μ	Coeficiente de fricción	-
	DIVERSOS	
SÍMBOLO	CARACTERÍSTICAS	UNIDADES
pie	Unidad lineal de medición	pie
lb-pie	Unidades de torque o momento	libras-pie
pulg	Unidad lineal de medición	pulg
lb	Unidades de fuerza o peso	libras
mm	Unidad lineal de medición (SI)	milímetro
	Advertencia	-
	REFERENCIAS	
AGMA	American Gear Manufacturers Associati (Asociación Americana de Fabricantes de Eng	
ANSI	American National Standards Institute (Instituto Americano de Normas)	9
ASTM	American Society for Testing and Mater (Sociedad Americana para Pruebas y Mate	
DIN	Deutsches Institut für Normung (Instituto Alemán de Normalización)	
ISO	International Standards Organization (Organización Internacional para la Estandi	
NLGI	National Lubricating Grease Institute (Instituto Nacional de Grasas Lubricante	
SAE	Society of Automotive Engineers (Sociedad de Ingenieros Automotrice:	-\

Introducción

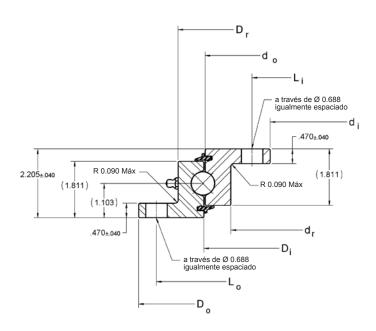
Los rodamientos de la Serie RK tienen una sección transversal con brida en uno o ambos anillos y varían en tamaño del diámetro exterior de 20 a 47 pulgadas (500 a 1200 mm). El diseño de la brida reduce el peso y proporciona al diseñador del equipo mayor flexibilidad para la configuración de las estructuras de montaje adyacentes y los arreglos de sujeción. Los rodamientos de la Serie RK son idóneos para muchas aplicaciones donde un diámetro grande y un peso más ligero son factores predominantes en la selección de un rodamiento.

Características de diseño

La configuración interna es una pista de arco gótico de ranura profunda, que proporciona cuatro puntos de contacto con las bolas, lo que permite al rodamiento transportar simultáneamente las cargas radiales, axiales y de momento. El uso de bolas espaciadoras alternadas con bolas de carga permite un torque de rotación menor y un desempeño superior en aplicaciones que implican movimiento oscilatorio. Se proporcionan sellos integrados sobre la cara para ayudar en la exclusión de contaminantes.

Los rodamientos de la Serie RK se ofrecen con configuraciones sin engranaje, con engranaje interno y con engranaje externo para máxima flexibilidad de diseño. Estos engranajes son diseños de involuta Stub con ángulos de presión de 20°, fabricados con calidad Clase Q5 de la AGMA y tolerancias de 0.005 a 0.015 pulgadas para el backlash entre engranajes.

Todos los modelos cuentan con cuatro graseras para lubricación, espaciadas 90 grados. En los modelos sin engranaje y con engranaje interno, estas se encuentran ubicadas en el diámetro exterior con caja (D_r) . En los modelos con engranaje externo, se encuentran ubicadas en el diámetro interior con caja (d_r) .

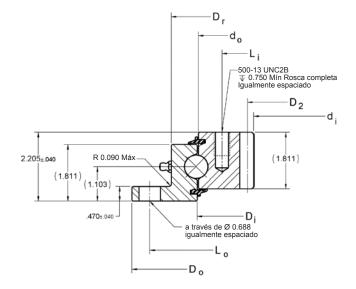

Disponibilidad

Los rodamientos de la Serie RK normalmente están disponibles en existencia y los piñones de acoplamiento para las versiones con engranaje también están normalmente disponibles. Consulte la página 70 para los piñones de acoplamiento.

Aplicaciones

Los rodamientos de la Serie RK se han utilizado con éxito en una variedad de aplicaciones de trabajo ligero o mediano que incluyen:

- Grúas, plumas y elevadores pequeños
- Posicionadoras industriales y mesas giratorias
- Articulaciones giratorias de rampas
- Máquinas de embalaje
- Máquinas de llenado de botellas
- Transportadores y equipo de manejo de materiales relacionado
- Pantallas rotatorias

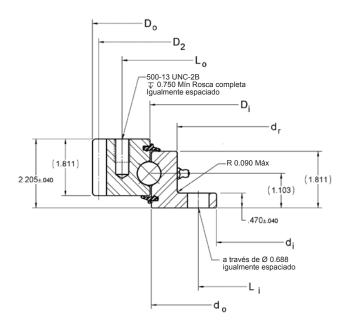


Sin engranaje

			DESCRIPCIÓ	N DE DIMENSION	NES Y PESO		
N/P Kaydon	D _o (pulg)	d _i (pulg)	D _r (pulg)	D _i (pulg)	d _o (pulg)	d _r (pulg)	G APROX. (lb)
RK6-16P1Z	20.390	11.970	17.870	16.220	16.140	14.490	58
RK6-22P1Z	25.510	17.090	22.990	21.340	21.260	19.610	76
RK6-25P1Z	29.450	21.030	26.930	25.280	25.200	23.550	89
RK6-29P1Z	33.390	24.970	30.870	29.220	29.140	27.490	104
RK6-33P1Z	37.320	28.900	34.800	33.150	33.070	31.420	118
RK6-37P1Z	41.260	32.840	38.740	37.090	37.010	35.360	132
RK6-43P1Z	47.170	38.750	44.650	43.000	42.920	41.270	153
Tolerancias	±.040	±.040	+.000 080	Ref.	Ref.	+.080 000	

		_ D	CLASIFICACIÓN						
N/P Kaydon	ANILLO EXTERNO		ANILLO II	ANILLO INTERNO		STUB IN	DEL MOMENTO		
N/F Kayuuli	L _o	n _o	L _i	n _i	D ₂	D ₂ P _d		F _z	C _{rm}
	(pulg)		(pulg)		(pulg)			(lb)	(lb-pie)
RK6-16P1Z	19.250	8	13.130	12	_	_	_	_	22,700
RK6-22P1Z	24.380	12	18.130	15	_	_	_	_	37,700
RK6-25P1Z	28.380	12	22.130	18	_	_	_	_	49,800
RK6-29P1Z	32.250	15	26.130	18	_	_	_	_	54,200
RK6-33P1Z	36.250	18	30.000	18	_	_	_	_	56,500
RK6-37P1Z	40.130	18	34.000	20	_	_	_	_	65,200
RK6-43P1Z	46.000	18	39.880	24	_	_	_	_	75,500

¿No es exactamente lo que necesita? Póngase en contacto con Kaydon para preguntar sobre las características personalizadas como por ejemplo: los diferentes orificios de montaje, la holgura interna, los diámetros piloto, los arreglos de transmisión o el galvanizado Endurakote.

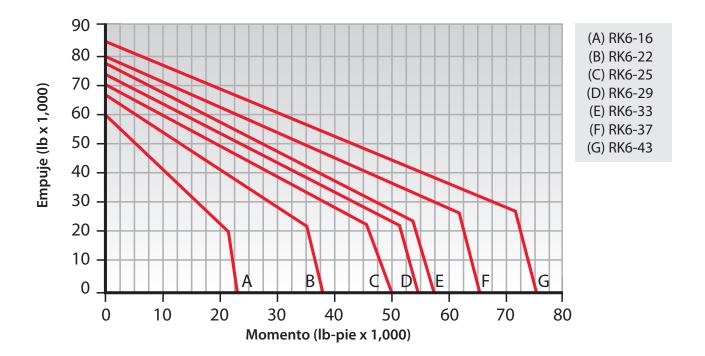


Engranaje interno

			DESCRIPCIÓ	N DE DIMENSIOI	NES Y PESO		
N/P Kaydon	D _o (pulg)	d _i (pulg)	D _r (pulg)	D _i (pulg)	d _o (pulg)	d _r (pulg)	G APPROX. (lb)
RK6-16N1Z	20.390	12.850	17.870	16.220	16.140	_	65
RK6-22N1Z	25.510	17.600	22.990	21.340	21.260	_	90
RK6-25N1Z	29.450	21.600	26.930	25.280	25.200	_	106
RK6-29N1Z	33.390	25.600	30.870	29.220	29.140	_	121
RK6-33N1Z	37.320	29.133	34.800	33.150	33.070	_	148
RK6-37N1Z	41.260	33.133	38.740	37.090	37.010	_	165
RK6-43N1Z	47.170	39.133	44.650	43.000	42.920	_	188
Tolerancias	±.040	+.030 000	+.000 080	Ref.	Ref.	Ref.	

		ORIFICIOS DE MONTAJE					DATOS DEL ENGRANAJE				
N/D Kaudan	ANILLO E	XTERNO	ANILLO IN	ANILLO INTERNO		STUB INV., α = 20°					
N/P Kaydon	L _o	n _o	L _i	n _i	D ₂	P _d	z ₂	F _z	C _{rm}		
	(pulg)		(pulg)		(pulg)			(lb)	(lb-pie)		
RK6-16N1Z	19.250	8	14.880	12	13.250	4	53	6800	22,700		
RK6-22N1Z	24.380	10	19.630	15	18.000	4	72	6530	37,700		
RK6-25N1Z	28.380	12	23.630	18	22.000	4	88	6400	49,800		
RK6-29N1Z	32.250	15	27.630	18	26.000	4	104	6300	54,200		
RK6-33N1Z	36.250	18	31.500	18	29.667	3	89	8520	56,500		
RK6-37N1Z	40.130	18	35.500	20	33.667	3	101	8420	65,200		
RK6-43N1Z	46.000	18	41.500	24	39.667	3	119	8340	75,500		

¿No es exactamente lo que necesita? Póngase en contacto con Kaydon para preguntar sobre las características personalizadas como por ejemplo: los diferentes orificios de montaje, la holgura interna, los diámetros piloto, los arreglos de transmisión o el galvanizado Endurakote.


Engranaje externo

			DESCRIPCIÓ	N DE DIMENSIOI	NES Y PESO		
N/P Kaydon	D _o (pulg)	d _i (pulg)	D _r (pulg)	D _i (pulg)	d _o (pulg)	d _r (pulg)	G APPROX. (lb)
RK6-16E1Z	19.900	11.970	_	16.220	16.140	14.490	72
RK6-22E1Z	25.150	17.090	_	21.340	21.260	19.610	96
RK6-25E1Z	29.150	21.030	_	25.280	25.200	23.550	115
RK6-29E1Z	32.900	24.970	_	29.220	29.140	27.490	128
RK6-33E1Z	37.200	28.900	_	33.150	33.070	31.420	152
RK6-37E1Z	41.200	32.840	_	37.090	37.010	35.360	172
RK6-43E1Z	46.867	38.750	_	43.000	42.920	41.270	189
Tolerancias	+.000 030	±.040	Ref.	Ref.	Ref.	+.080 000	

		D	ATOS DEL	CLASIFICACIÓN						
N/D Kandan	ANILLO E	ANILLO EXTERNO		ANILLO INTERNO		STUB INV., α = 20°			DEL MOMENTO	
N/P Kaydon	L _o	n _o	L _i	n _i	D ₂	P_d	z ₂	F _Z	C _{rm}	
	(pulg)		(pulg)		(pulg)			(lb)	(lb-pie)	
RK6-16E1Z	18.000	8	13.130	12	19.500	4	78	5,560	22,700	
RK6-22E1Z	23.250	12	18.130	15	24.750	4	99	5,650	37,700	
RK6-25E1Z	27.250	15	22.130	18	28.750	4	115	5,700	49,800	
RK6-29E1Z	31.000	18	26.130	18	32.500	4	130	5,740	54,200	
RK6-33E1Z	35.000	18	30.000	18	36.667	3	110	7,580	56,500	
RK6-37E1Z	38.880	18	34.000	20	40.667	3	122	7,620	65,200	
RK6-43E1Z	44.630	20	39.880	24	46.333	3	139	7,680	75,500	

¿No es exactamente lo que necesita? Póngase en contacto con Kaydon para preguntar sobre las características personalizadas como por ejemplo: los diferentes orificios de montaje, la holgura interna, los diámetros piloto, los arreglos de transmisión o el galvanizado Endurakote.

Gráfica de carga de la serie RK



Las gráficas de clasificación solo se aplican para las condiciones de operación definidas como OPERACIÓN NORMAL en la Sección 2 y cuando se instalan y se les da mantenimiento como se define en la Sección 3 de este catálogo. El aumento del diámetro del rodamiento no necesariamente garantiza el aumento de la clasificación del rodamiento, debido a las variaciones en los elementos de rodadura, la sección del anillo y los complementos de sujeción. Para obtener información sobre las bases para el desarrollo de las Gráficas de clasificación, consulte el párrafo CLASIFICACIÓN DE CARGA en la Sección 2.

Introducción

Las coronas de orientación de la Serie HS son similares en tamaño a las de la Serie RK, pero tienen secciones transversales rectangulares, lo que permite patrones de orificios alternados, así como mejor rigidez y mayor capacidad. Están disponibles en tamaños de diámetro exterior de 20 a 47 pulgadas (500 a 1,200 mm) con una sección transversal estándar.

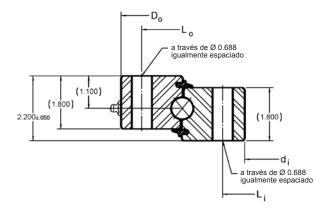
Características de diseño

La configuración interna consiste en pistas de arco gótico de ranura profunda y complemento máximo de bolas. Esto se traduce en un diseño de cuatro puntos de contacto que proporciona capacidades excepcionales de carga de momento, de empuje y radial. Se proporcionan sellos integrados para ayudar en la exclusión de contaminantes.

Los anillos con engranaje tienen orificios roscados, mientras que los anillos sin engranaje tienen orificios de lado a lado.

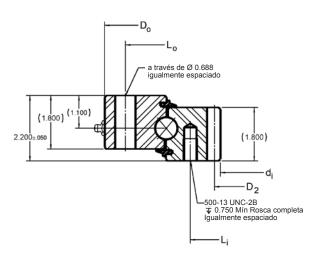
Los rodamientos de la Serie HS están disponibles en configuraciones con engranaje interno, con engranaje externo y sin engranaje. Estos engranajes son diseños de involuta Stub con ángulos de presión de 20°, fabricados con calidad Clase Q5 de la AGMA y tolerancias de 0.015 a 0.025 pulgadas para el contacto entre engranajes.

Todos los modelos cuentan con dos graseras para lubricación, espaciadas 180 grados. En los modelos sin engranaje y con engranaje interno, las graseras se encuentran ubicadas en el diámetro exterior (D_c). En los modelos con engranaje externo, las graseras se encuentran ubicadas en el diámetro interior (d.).


Disponibilidad

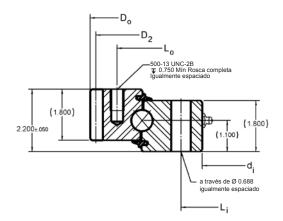
Las piezas forjadas para los rodamientos de la Serie HS se encuentran en existencia y los rodamientos terminados normalmente se pueden entregar de inmediato. Los piñones de acoplamiento también están normalmente disponibles y se pueden encontrar en la página 70.

Aplicaciones


Los rodamientos de la Serie HS se han utilizado con éxito en una variedad de aplicaciones para trabajo de mediano a pesado incluidas:

- Grúas
- Elevadores aéreos
- Excavadoras y torres de perforación
- Articulaciones giratorias de rampas
- Rotadores para montacargas
- Plataformas giratorias industriales

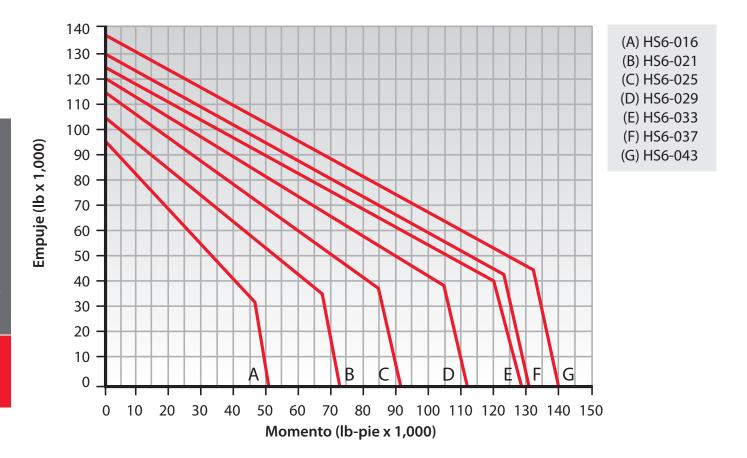
Sin engranaje


N/P Kaydon		DESCRIPCIÓN DE DIMENSIONES Y PESO			ORIFICIOS DE MONTAJE ANILLO ANILLO EXTERNO INTERNO			DATOS DEL ENGRANAJE STUB INV., α = 20°				CLASIFICACIÓN DEL MOMENTO C _{rm}
N/F Raydoll	D _o	d _i	G APROX.	L _o	n _o	L _i	n _i	D ₂	P _d	z ₂	F _z	¬rm
	(pulg)	(pulg)	(lb)	(pulg)		(pulg)		(pulg)			(lb)	(lb-pie)
HS6-16P1Z	20.400	12.000	103	19.000	8	13.500	12	_	_	_	_	50,500
HS6-21P1Z	25.500	17.000	137	24.000	12	18.500	15	_	_	_	_	72,700
HS6-25P1Z	29.500	21.000	162	28.000	15	22.500	18	_	_	_	_	91,800
HS6-29P1Z	33.400	25.000	186	32.000	15	26.500	18	_	_	_	_	111,900
HS6-33P1Z	37.400	28.830	216	35.750	18	30.500	20	_	_	_	_	128,000
HS6-37P1Z	41.250	32.830	233	39.750	18	34.380	20	_	_	_	_	130,900
HS6-43P1Z	47.180	38.750	269	45.620	20	40.250	24	_	_	_	_	139,900

Engranaje interno

	DES	DESCRIPCIÓN DE			FICIOS	DE MONTA	JE	DATOS DEL ENGRANAJE					
N/P Kaydon		ISIONES		ANII EXTE		ANIL INTEF				I_{\bullet} , $\alpha = 20$		CLASIFICACIÓN DEL MOMENTO C _{rm}	
W/F Kaydon	D _o	d _i	G APROX.	L _o	n _o	L _i	n _i	D ₂	P_d	z ₂	F _z	⁻rm	
	(pulg)	(pulg)	(lb)	(pulg)		(pulg)		(pulg)			(lb)	(lb-pie)	
HS6-16N1Z	20.400	12.850	92	19.000	8	14.880	16	13.250	4	53	6,084	50,500	
HS6-21N1Z	25.500	17.600	117	24.000	12	19.630	20	18.000	4	72	5,842	72,700	
HS6-25N1Z	29.500	21.600	148	28.000	15	23.630	24	22.000	4	88	5,719	91,800	
HS6-29N1Z	33.400	25.600	171	32.000	15	27.630	28	26.000	4	104	5,634	111,900	
HS6-33N1Z	37.400	29.130	205	35.750	18	31.500	30	29.667	3	89	7,617	128,000	
HS6-37N1Z	41.250	33.133	226	39.750	18	35.500	32	33.667	3	101	7,531	130,900	
HS6-43N1Z	47.180	39.130	253	45.620	20	41.500	36	39.667	3	119	7,434	139,900	

¿No es exactamente lo que necesita? Póngase en contacto con Kaydon para preguntar sobre las características personalizadas como por ejemplo: los diferentes orificios de montaje, la holgura interna, los diámetros piloto, los arreglos de transmisión o el galvanizado Endurakote.



Engranaje externo

	DES	CRIPCIÓ	N DE	ORII	ICIOS	DE MONTA	\JE	DATOS DEL ENGRANAJE				CL ACIFICACIÓN	
N/P Kaydon		ISIONES		ANII EXTE		ANIL INTER				$I.$, $\alpha = 20$		CLASIFICACIÓN DEL MOMENTO C _{rm}	
N/F Kayuon	D _o	d _i	G APROX.	L _o	n _o	L _i	n _i	D ₂	P _d	z ₂	F _z	-rm	
	(pulg)	(pulg)	(lb)	(pulg)		(pulg)		(pulg)			(lb)	(lb-pie)	
HS6-16E1Z	19.900	12.000	85	18.000	14	13.500	12	19.500	4	78	4,981	50,500	
HS6-21E1Z	25.150	17.000	108	23.250	18	18.500	15	24.750	4	99	5,076	72,700	
HS6-25E1Z	29.150	21.000	137	27.250	20	22.500	18	28.750	4	115	5,127	91,800	
HS6-29E1Z	32.900	25.000	158	31.000	24	26.500	18	32.500	4	130	5,164	111,900	
HS6-33E1Z	37.200	28.830	188	35.000	28	30.500	20	36.667	3	110	6,817	128,000	
HS6-37E1Z	41.200	32.830	207	38.880	28	34.380	20	40.667	3	122	6,860	130,900	
HS6-43E1Z	46.870	38.750	237	44.630	32	40.250	24	46.333	3	139	6,910	139,900	

¿No es exactamente lo que necesita? Póngase en contacto con Kaydon para preguntar sobre las características personalizadas como por ejemplo: los diferentes orificios de montaje, la holgura interna, los diámetros piloto, los arreglos de transmisión o el galvanizado Endurakote.

Gráfica de carga de la serie HS

Las gráficas de clasificación solo se aplican para las condiciones de operación definidas como OPERACIÓN NORMAL en la Sección 2 y cuando se instalan y se les da mantenimiento como se define en la Sección 3 de este catálogo. El aumento del diámetro del rodamiento no necesariamente garantiza el aumento de la clasificación del rodamiento, debido a las variaciones en los elementos de rodadura, la sección del anillo y los complementos de sujeción. Para obtener información sobre las bases para el desarrollo de las Gráficas de clasificación, consulte el párrafo CLASIFICACIÓN DE CARGA en la Sección 2.

¿No es exactamente lo que necesita? Póngase en contacto con Kaydon para preguntar sobre las características personalizadas como por ejemplo: los diferentes orificios de montaje, la holgura interna, los diámetros piloto, los arreglos de transmisión o el galvanizado Endurakote.

Introducción

Las coronas de orientación de la Serie HT son versiones más grandes de la Serie HS, con el diámetro de las bolas y el área de la sección transversal aumentados, proporcionando sustancialmente más capacidad. Varían en tamaños de diámetro exterior de 36 a 66 pulgadas (900 a 1,700 mm) con una sección transversal estándar.

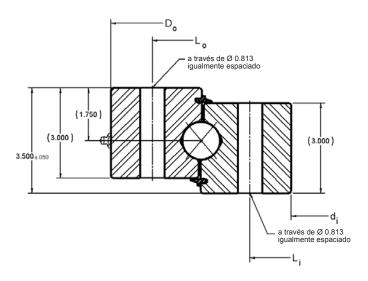
Características de diseño

La configuración interna consiste en pistas de arco gótico de ranura profunda y complemento máximo de bolas. Esto se traduce en un diseño de cuatro puntos de contacto que proporciona capacidades excepcionales de carga de momento, de empuje y radial. Se proporcionan sellos integrados para ayudar en la exclusión de contaminantes.

Los anillos con engranaje tienen orificios roscados, mientras que los anillos sin engranaje tienen orificios de lado a lado.

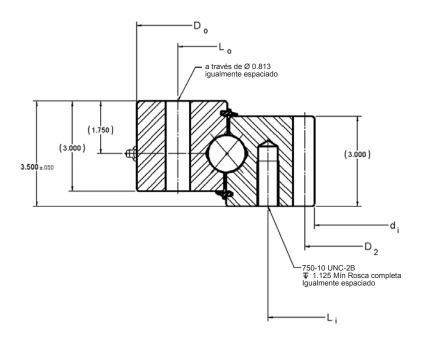
Los rodamientos de la Serie HT están disponibles en configuraciones con engranaje interno, con engranaje externo y sin engranaje. Estos engranajes son diseños de involuta Stub con ángulos de presión de 20°, fabricados con calidad Clase Q5 de la AGMA y tolerancias de 0.015 a 0.025 pulgadas para backlash entre engranajes.

Todos los modelos cuentan con dos graseras para lubricación, espaciadas 180 grados. En los modelos sin engranaje y con engranaje interno, las graseras se encuentran ubicadas en el diámetro exterior (D_c). En los modelos con engranaje externo, las graseras se encuentran ubicadas en el diámetro interior (d.).

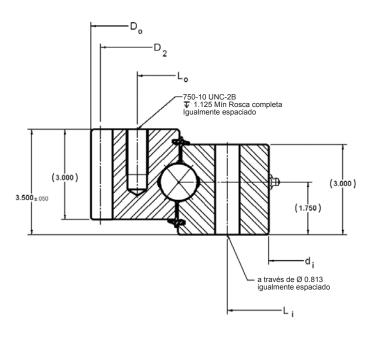

Disponibilidad

Los rodamientos de la Serie HT se fabrican bajo pedido y pueden requerir un plazo mayor de entrega ya que las piezas forjadas no se encuentran en existencia.

Aplicaciones

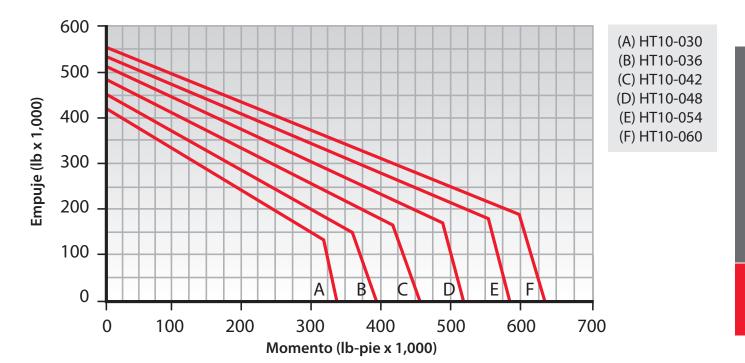

Los rodamientos de la Serie HT se han utilizado con éxito en una variedad de aplicaciones para trabajo de mediano a pesado incluidas:

- Grúas
- Elevadores aéreos
- Excavadoras y torres de perforación
- Articulaciones giratorias de rampas
- Rotadores para montacargas
- Plataformas giratorias industrials


Sin engranaje

	DES	CRIPCIÓ	N DE	ORII	ORIFICIOS DE MONTAJE				OS DEL	A IE		
N/P Kaydon		SIONES		ANII EXTE		ANIL INTEF				$I.$, $\alpha = 20$		CLASIFICACIÓN DEL MOMENTO C _{rm}
N/F Raydon	D _o	d _i	G APROX.	L _o	n _o	L _i	n _i	D ₂	P _d	z ₂	F _z	-rm
	(pulg)	(pulg)	(lb)	(pulg)		(pulg)		(pulg)			(lb)	(lb-pie)
HT10-30P1Z	36.000	24.000	447	33.250	24	26.750	30	_	_	_	_	340,000
HT10-36P1Z	42.000	30.000	521	39.250	28	32.750	32	_	_	_	_	395,700
HT10-42P1Z	48.000	36.000	628	45.250	32	38.750	36	_	_	_	_	457,000
HT10-48P1Z	54.000	42.000	719	51.250	36	44.750	40	_	_	_	_	517,900
HT10-54P1Z	60.000	48.000	809	57.250	40	50.750	44	_	_	_	_	578,400
HT10-60P1Z	66.000	54.000	865	63.250	44	56.750	48	_	_	_	_	638,800

Engranaje interno


		CRIPCIÓ ISIONES		ORIFICIOS DE MONTAJE ANILLO ANILLO EXTERNO INTERNO					ENGRAN /., α = 20		CLASIFICACIÓN DEL MOMENTO	
N/P Kaydon	D _o d _i G		APROX.	L _o (pulg)	n _o	L _i (pulg)	n _i	D ₂	P _d	z ₂	F _z	C _{rm} (Ib-pie)
HT10-30N1Z	36.000	24.160	411	33.250	24	27.250	30	24.800	2.5	62	21,783	340,000
HT10-36N1Z	42.000	30.160	517	39.250	28	33.250	32	30.800	2.5	77	21,195	395,700
HT10-42N1Z	48.000	36.160	580	45.250	32	39.250	36	36.800	2.5	92	20,819	457,000
HT10-48N1Z	54.000	42.160	689	51.250	36	45.250	40	42.800	2.5	107	20,548	517,900
HT10-54N1Z	60.000	48.160	775	57.250	40	51.250	44	48.800	2.5	122	20,344	578,400
HT10-60N1Z	66.000	54.160	842	63.250	44	57.250	48	54.800	2.5	137	20,185	638,800

Engranaje externo

	DES	CRIPCIÓ	N DE	ORII	FICIOS	DE MONTA	JE	DATOS DEL ENGRANAJE				,
N/P Kaydon		ISIONES		ANII EXTE		ANIL INTEF				$I.$, $\alpha = 20$		CLASIFICACIÓN DEL MOMENTO C _{rm}
Wi Kayaon	D _o	d _i G APROX.		L _o	n _o	L _i	n _i	D ₂	P _d	z ₂	F _z	−rm
	(pulg)	(pulg)	(lb)	(pulg)		(pulg)		(pulg)			(lb)	(lb-pie)
HT10-30E1Z	35.840	24.000	398	32.750	24	26.750	30	35.200	2.5	88	18,393	340,000
HT10-36E1Z	41.840	30.000	481	38.750	28	32.750	32	41.200	2.5	103	18,608	395,700
HT10-42E1Z	47.840	36.000	562	44.750	32	38.750	36	47.200	2.5	118	18,772	457,000
HT10-48E1Z	53.840	42.000	660	50.750	36	44.750	40	53.200	2.5	133	18,901	517,900
HT10-54E1Z	59.840	48.000	742	56.750	40	50.750	44	59.200	2.5	148	19,005	578,400
HT10-60E1Z	65.840	54.000	800	62.750	44	56.750	48	65.200	2.5	163	19,090	638,800

Gráfica de carga de la serie HT

Las gráficas de clasificación solo se aplican para las condiciones de operación definidas como OPERACIÓN NORMAL en la Sección 2 y cuando se instalan y se les da mantenimiento como se define en la Sección 3 de este catálogo. El aumento del diámetro del rodamiento no necesariamente garantiza el aumento de la clasificación del rodamiento, debido a las variaciones en los elementos de rodadura, la sección del anillo y los complementos de sujeción. Para obtener información sobre las bases para el desarrollo de las Gráficas de clasificación, consulte el párrafo CLASIFICACIÓN DE CARGA en la Sección 2.

Las versiones de estos rodamientos estándar con características fabricadas a requerimientos de mayor precisión se pueden utilizar en aplicaciones de máquinas herramientas, manejo de materiales, transmisión de potencia, radar y robótica.

Póngase en contacto con Kaydon para hablar con un ingeniero de aplicaciones sobre las siguientes opciones:

- Control de variación de precisión
- Engranaje de precisión
- Pre-carga para cero juego libre y mayor rigidez
- Diámetros piloto
- Orificios de montaje roscados
- Galvanizado Endurakote para mayor resistencia a la corrosión

Kaydon también ofrece una Serie KH de alta precisión en una línea estándar que incorpora todo lo anterior excepto el galvanizado Endurakote.

Introducción

Las coronas de orientación de la Serie MT tienen una sección transversal rectangular y varían en tamaño del diámetro exterior de 4 a 47 pulgadas (100 a 1200 mm). Proporcionan economía y capacidad óptimas para una dimensión envolvente dada.

Características de diseño

La configuración interna consiste en pistas de arco gótico de ranura profunda y complemento máximo de bolas. Esto se traduce en un diseño de cuatro puntos de contacto que proporciona capacidades excepcionales de carga de momento, de empuje y radial. Sellos de montaje sobre la cara integrados para los tamaños más grandes y protecciones sin contacto para los más pequeños que ayudan en la exclusión de contaminantes. Estas características las hacen una opción ideal para una amplia gama de aplicaciones desde trabajo ligero a trabajo pesado.

Los rodamientos de la Serie MT se ofrecen en configuraciones sin engranaje (MTO) y con engranaje externo (MTE). Los engranajes son de involuta Fellows Stub hasta el tamaño MTE-324 e involuta Stub para tamaños más grandes, todos fabricados con la norma de calidad Clase Q6 de la AGMA. Póngase en contacto con Kaydon para la tolerancia de contacto entre engranajes del diente.

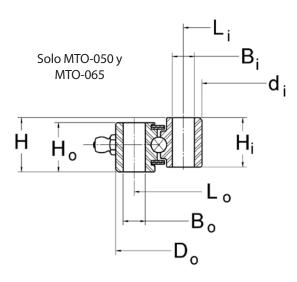
Los números de parte que terminan en sufijo "T" tienen orificios de montaje roscados. Las profundidades de la rosca son de un mínimo de 1.5 veces el diámetro del tamaño del orificio nominal indicado.

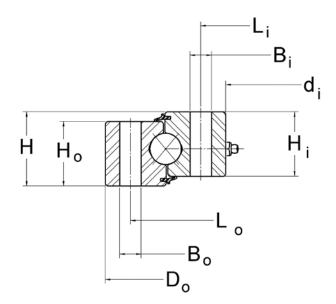
Los números de parte que terminan con el sufijo "X" proporcionan capacidad de carga adicional.

Disponibilidad

Los rodamientos de la Serie MT normalmente están disponibles en existencia y los piñones de acoplamiento para las versiones con engranaje hasta MTE-705 también normalmente están disponibles. Consulte la página 70 para los piñones de acoplamiento.

Aplicaciones

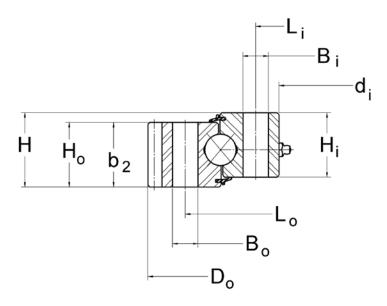

Los rodamientos de la Serie MT se han utilizado con éxito en una amplia gama de aplicaciones desde trabajo ligero a trabajo pesado.


Los tamaños más pequeños son idóneos para:

- Manipuladoras
- Grúas de pluma
- Dispositivos de ayuda de elevación
- Posicionadores de trabajo

Los tamaños más grandes son muy idóneos para:

- Grúas montadas en camiones
- Elevadores aéreos
- Rampas hidráulicas
- Turbinas de viento pequeñas
- Mesas de posicionamiento sin precision

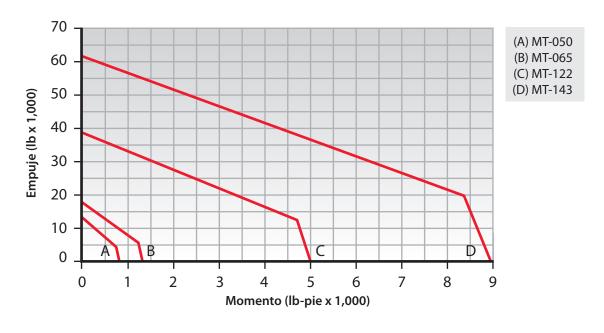


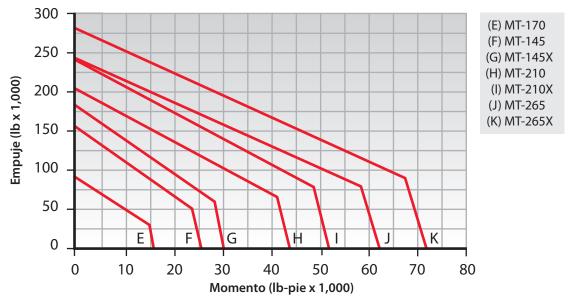
Sin engranaje

N/D Kandan		DESCRIPO	CIÓN DE DIMENSIONE	ES Y PESO		
N/P Kaydon	D _o	d _i	н	H _i /H _o	G APPROX.	
	(pulg)	(pulg)	(pulg)	(pulg)	(lb)	
MTO-050	4.331	1.968	0.787	0.728	2	
MTO-050T	4.331	1.968	0.787	0.728	2	
MTO-065	5.315	2.559	0.866	0.787	4	
MTO-065T	5.315	2.559	0.866	0.787	4	
MTO-122	8.898	4.803	1.339	1.142	13	
MTO-122T	8.898	4.803	1.339	1.142	13	
MTO-143	9.803	5.630	1.339	1.142	15	
MTO-143T	9.803	5.630	1.339	1.142	15	
MTO-145	11.811	5.709	1.968	1.732	37	
MTO-145T	11.811	5.709	1.968	1.732	37	
MTO-145X	12.286	5.709	1.968	1.732	41	
MTO-170	12.205	6.693	1.811	1.614	33	
MTO-170T	12.205	6.693	1.811	1.614	33	
MTO-210	14.370	8.268	1.575	1.496	38	
MTO-210T	14.370	8.268	1.575	1.496	38	
MTO-210X	14.686	8.268	1.968	1.732	48	
MTO-265	16.535	10.433	1.968	1.732	54	
MTO-265T	16.535	10.433	1.968	1.732	54	
MTO-265X	17.086	10.433	1.968	1.732	61	
*MTO-324T	20.486	12.750	2.062	2.022	105	
MTO-324X	20.486	12.770	2.375	2.063	105	

^{*}El número de parte MTO-324 se ha reemplazado por el MTO-324T.

		ORIFICIOS	ORIFICIOS DE MONTAJE						
	ANILLO EXTERNO			ANILLO INTERNO		CLASIFICACIÓN DEL MOMENTO			
L _o (pulg)	n _o	B _o (pulg)	L _i (pulg)	n _i	B _i (pulg)	C _{rm} (lb-pie)			
3.818	8	0.26	2.480	8	0.26	830			
3.818	8	M6	2.480	8	M6	830			
4.724	8	0.354	3.149	8	0.354	1,330			
4.724	8	M8	3.149	8	M8	1,330			
8.189	12	0.354	5.512	12	0.354	5,020			
8.189	12	M8	5.512	12	M8	5,020			
8.937	12	0.433	6.496	12	0.433	8,950			
8.937	12	M10	6.496	12	M10	8,950			
10.630	16	0.562	6.890	16	0.562	26,000			
10.630	16	5/8-11	6.890	16	5/8-11	26,000			
10.630	16	0.594	6.890	16	0.594	30,600			
11.024	12	0.512	7.874	12	0.512	16,520			
11.024	12	M12	7.874	12	M12	16,520			
13.190	16	0.562	9.449	20	0.562	44,500			
13.190	16	5/8-11	9.449	20	5/8-11	44,500			
13.190	16	0.594	9.449	20	0.594	52,100			
15.354	18	0.562	11.614	24	0.562	62,000			
15.354	18	5/8-11	11.614	24	5/8-11	62,000			
15.354	18	0.594	11.614	24	0.594	71,900			
18.875	20	5/8-11	14.375	20	5/8-11	102,400			
18.875	20	0.688	14.375	20	0.688	102,400			

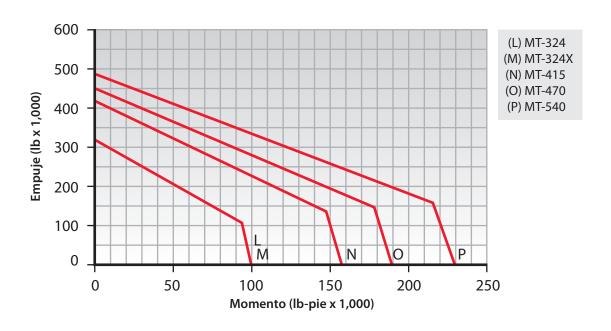

Engranaje externo

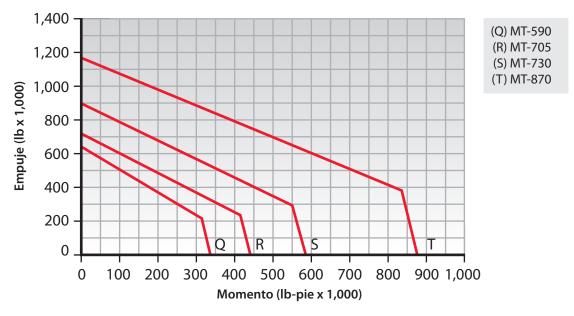

	DESC	DIDCIÓN	DE DIMEN	ISIONES !	V DESO			ORIFICIOS	DE MONT	AJE		
	DESC	RIFCION	DE DIMEN	ISIONES	I FE3O	A	NILLO E	XTERNO		ANILLO IN	TERNO	
N/P Kaydor	D _o	d _i	н	H _i /H _o	G APROX.	L _o	n _o	В	L	n _i	B _i	
	(pulg)	(pulg)	(pulg)	(pulg)	(lb)	(pulg)		(pulg)	(pulg)		(pulg)	
MTE-145	12.286	5.709	1.968	1.732	38	10.630	16	0.562	6.890	16	0.562	
MTE-145T	12.286	5.709	1.968	1.732	38	10.630	16	5/8-11	6.890	16	5/8-11	
MTE-145X	12.286	5.709	1.968	1.732	38	10.630	16	0.594	6.890	16	0.594	
MTE-210	14.686	8.268	1.575	1.496	38	13.190	16	0.562	9.449	20	0.562	
MTE-210T	14.686	8.268	1.575	1.496	38	13.190	16	5/8-11	9.449	20	5/8-11	
MTE-210X	14.686	8.268	1.968	1.732	44	13.190	16	0.594	9.449	20	0.594	
MTE-265	17.086	10.433	1.968	1.732	57	15.354	18	0.562	11.614	24	0.562	
MTE-265T	17.086	10.433	1.968	1.732	57	15.354	18	5/8-11	11.614	24	5/8-11	
MTE-265X	17.086	10.433	1.968	1.732	57	15.354	18	0.594	11.614	24	0.594	
*MTE-324T	20.486	12.750	2.062	2.022	98	18.875	20	5/8-11	14.375	20	5/8-11	
MTE-324X	20.486	12.770	2.375	2.063	99	18.875	20	0.688	14.375	20	0.688	
MTE-415	24.650	16.250	2.375	2.063	132	22.250	16	0.813	17.750	20	0.813	
MTE-415T	24.650	16.250	2.375	2.063	132	22.250	16	3/4-10	17.750	20	3/4-10	
MTE-470	26.900	18.500	2.375	2.063	147	24.500	18	0.813	20.000	24	0.813	
MTE-470T	26.900	18.500	2.375	2.063	147	24.500	18	3/4-10	20.000	24	3/4-10	
MTE-540	29.650	21.250	2.375	2.063	163	27.250	24	0.813	22.750	28	0.813	
MTE-540T	29.650	21.250	2.375	2.063	163	27.250	24	3/4-10	22.750	28	3/4-10	
MTE-590	33.534	23.125	2.875	2.563	283	30.625	18	0.938	24.875	24	0.938	
MTE-590T	33.534	23.125	2.875	2.563	283	30.625	18	7/8-9	24.875	24	7/8-9	
MTE-705	38.201	27.750	2.875	2.563	325	35.250	24	0.938	29.50	28	0.938	
MTE-705T	38.201	27.750	2.875	2.563	325	35.250	24	7/8-9	29.50	28	7/8-9	
MTE-730	41.85	28.750	3.250	2.880	491	38.000	20	1.063	31.00	24	1.063	
MTE-730T	41.85	28.750	3.250	2.880	491	38.000	20	1-8	31.00	24	1-8	
MTE-870	47.444	34.250	4.250	3.875	771	43.875	24	1.188	36.25	28	1.188	
MTE-870T	47.444	34.250	4.250	3.875	771	43.875	24	1 1/8-7	36.25	28	1 1/8-7	
¥EL	NATE :	224		I N AT	E 22.4T							

^{*}El número de parte MTE-324 se ha reemplazado por el MTE-324T.

	DAT	OS DEL ENGRAN	AJE			
		α = 20°			F _z (lb)	CLASIFICACIÓN DEL MOMENTO
FORMA DEL	D ₂	P _d	z ₂	b ₂	CARGA MÁXIMA DEL DIENTE DEL	C _{rm}
DIENTE	(pulg)			(pulg)	ENGRANAJE	(lb-pie)
FS	12.000	5/7	60	1.732	7,140	26,000
FS	12.000	5/7	60	1.732	7,140	26,000
FS	12.000	5/7	60	1.732	7,140	30,600
FS	14.400	5/7	72	1.496	5,810	44,500
FS	14.400	5/7	72	1.496	5,810	44,500
FS	14.400	5/7	72	1.732	7,290	52,100
FS	16.800	5/7	84	1.732	7,330	62,000
FS	16.800	5/7	84	1.732	7,330	62,000
FS	16.800	5/7	84	1.732	7,330	71,900
FS	20.200	5/7	101	2.022	8,700	102,400
FS	20.200	5/7	101	2.063	8,863	102,400
SD	24.250	4	97	2.063	10,420	159,200
SD	24.250	4	97	2.063	10,420	159,200
SD	26.500	4	106	2.063	10,460	191,600
SD	26.500	4	106	2.063	10,460	191,600
SD	29.250	4	117	2.063	10,520	232,000
SD	29.250	4	117	2.063	10,520	232,000
SD	33.000	3	99	2.563	17,290	338,700
SD	33.000	3	99	2.563	17,290	338,700
SD	37.667	3	113	2.563	17,390	443,200
SD	37.667	3	113	2.563	17,390	443,200
SD	41.200	2.5	103	2.630	21,290	588,000
SD	41.200	2.5	103	2.630	21,290	588,000
SD	46.800	2.5	117	3.875	31,620	873,800
SD	46.800	2.5	117	3.875	31,620	873,800

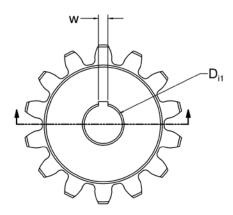
Gráfica de carga de la serie MT

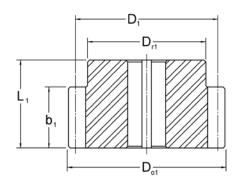




Las gráficas de clasificación solo se aplican para las condiciones de operación definidas como OPERACIÓN NORMAL en la Sección 2 y cuando se instalan y se les da mantenimiento como se define en la Sección 3 de este catálogo. El aumento del diámetro del rodamiento no necesariamente garantiza el aumento de la clasificación del rodamiento, debido a las variaciones en los elementos de rodadura, la sección del anillo y los complementos de sujeción. Para obtener información sobre las bases para el desarrollo de las Gráficas de clasificación, consulte el párrafo CLASIFICACIÓN DE CARGA en la Sección 2.

Gráfica de carga de la serie MT





Las gráficas de clasificación solo se aplican para las condiciones de operación definidas como OPERACIÓN NORMAL en la Sección 2 y cuando se instalan y se les da mantenimiento como se define en la Sección 3 de este catálogo. El aumento del diámetro del rodamiento no necesariamente garantiza el aumento de la clasificación del rodamiento, debido a las variaciones en los elementos de rodadura, la sección del anillo y los complementos de sujeción. Para obtener información sobre las bases para el desarrollo de las Gráficas de clasificación, consulte el párrafo CLASIFICACIÓN DE CARGA en la Sección 2.

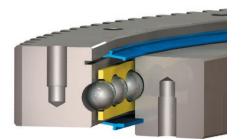
Tablas de piñones para las series RK, HS y MT

Piñones de acoplamiento para los rodamientos de la serie RK

N/P DEL	N/P DEL	DAT		ENGRANA 20°	JE	DESCRIPCIÓN DE DIMENSIONES Y PESO							
RODAMIENTO	PIÑÓN	FORMA DEL DIENTE	z ₁	P _d (pulg)	b ₁ (pulg)	L ₁ (pulg)	D ₁ (pulg)	D _{o1} (pulg)	D _{r1} (pulg)	D _{i1} (pulg)	w (pulg)	G APROX. (lb)	
RK6-16 al RK6-29	39200001 39200002	SD	14 17	4 4	2.000 2.000	2.880 2.880	3.500 4.250	3.900 4.650	2.880 3.630	1.000 1.000	1/4	6.4 10.0	
RK6-33 al RK6-43	39200003 39200004	SD	14 17	3	2.000 2.000	2.880 2.880	4.667 5.667	5.200 6.200	3.880 4.880	1.250 1.250	5/16	11.4 18.3	
Tolera	ncias			Ref.	±.015	±.015	Ref.	+.000 010	Ref.	+.002 000			

Piñones de acoplamiento para los rodamientos de la serie HS

N/P DEL	N/P DEL	DAT		ENGRAN <i>A</i> : 20°	\JE	DESCRIPCIÓN DE DIMENSIONES Y PESO						
RODAMIENTO	PIÑÓN	FORMA DEL DIENTE	z ₁	P _d (pulg)	b ₁ (pulg)	L ₁ (pulg)	D ₁ (pulg)	D _{o1} (pulg)	D _{r1} (pulg)	D _{i1} (pulg)	w (pulg)	G APROX. (lb)
HS6-16 al HS6-29	39200001 39200002	SD	14 17	4 4	2.000 2.000	2.880 2.880	3.500 4.250	3.900 4.650	2.880 3.630	1.000 1.000	1/4	6.4 10.0
HS6-33 al HS6-43	39200003 39200004	SD	14 17	3	2.000 2.000	2.880 2.880	4.667 5.667	5.200 6.200	3.880 4.880	1.250 1.250	5/16	11.4 18.3
Tolera	ncias			Ref.	±.015	±.015	Ref.	+.000 010	Ref.	+.002 000		


Piñones de acoplamiento para los rodamientos de la serie MT

N/P DEL RODAMIENTO	N/P DEL PIÑÓN	DATOS DEL ENGRANAJE $lpha$ = 20°				DESCRIPCIÓN DE DIMENSIONES Y PESO						
		FORMA DEL DIENTE	z ₁	P _d (pulg)	b ₁ (pulg)	L ₁ (pulg)	D ₁ (pulg)	D _{o1} (pulg)	D _{r1} (pulg)	D _{i1} (pulg)	w (pulg)	G APROX. (lb)
MTE-145 al MTE-324	39201001	FS	17	5/7	2.25	3.125	3.4	3.686	2.906	1.000	1/4	6.6
MTE-415 al MTE-540	39200001 39200002	SD	14 17	4	2.000 2.000	2.880 2.880	3.500 4.250	3.900 4.650	2.880 3.630	1.000 1.000	1/4	6.4 10.0
MTE-590 al MTE-705	39200003 39200004	SD	14 17	3	2.000 2.000	2.880 2.880	4.667 5.667	5.200 6.200	3.880 4.880	1.250 1.250	5/16	11.4 18.3
Tolerancias			Ref.	±.015	±.015	Ref.	-0.01	Ref.	0.002			

Serie KH

Introducción

Las coronas de orientación de la Serie KH tienen una sección transversal rectangular y varían en tamaño del diámetro exterior de 16 a 37 pulgadas (400 a 950 mm). Proporcionan posicionamiento y repetitividad precisos en aplicaciones donde la rotación es constante, intermitente u oscilante.

Características de diseño

La configuración interna es una pista de arco gótico de ranura profunda, que proporciona cuatro puntos de contacto con las bolas, lo que le permite transportar las cargas radiales, de empuje y de momento en forma individual o simultánea. El uso de pre-carga diametral interna proporciona mayor rigidez, que combinada con variaciones radiales y axiales controladas cuidadosamente, proporcionan repetitividad precisa. Las variaciones axiales son de 0.001 pulg TIR y las variaciones radiales para localización de los diámetros son de 0.002 pulg TIR.

Se utiliza un separador para mantener consistente el intervalo de espaciamiento de la bola, para mantener la fricción al mínimo y para reducir al mínimo el ruido. Se proporcionan sellos sobre la cara integrados para ayudar en la exclusión de contaminantes.

Los rodamientos de la Serie KH se ofrecen en configuraciones sin engranaje y con engranaje externo. Los engranajes tienen dientes de involuta de profundidad total y se fabrican con una calidad Clase Q8 de la AGMA, permitiendo menor contacto entre engranajes, posicionamiento más preciso y menos ruido durante el funcionamiento.

Disponibilidad

Los rodamientos de la Serie KH normalmente están disponibles en existencia.

Aplicaciones

Los rodamientos de la Serie KH se han utilizado con éxito en aplicaciones que demandan una mayor precisión, que incluyen:

- Mesas de precisión de indexado rotatorias
- Antenas de radar
- Antenas satelitales
- Robots
- Equipo médico
- Mesas de máquinas herramientas
- Cualquier diseño donde las características del rodamiento KH interactuarán con otros componentes de precisión.

Serie KH

Sin engranaje

N/D/K	DESCR	IPCIÓN D	DE DIMEN	ISIONES '	Y PESO	DA [·] ANIL EXTE	LO.	EL ORIFICI ANIL INTER	.LO		ATOS DE GRANA		CLASIFICACIÓN DEL DIENTE DEL ENGRANAJE
N/P Kaydon	D _o	d _i	D _i	d _o	G APROX.	L _o	n _o	L _i	n _i	D ₂	b ₂	z ₂	F _z
	(pulg)	(pulg)	(pulg)	(pulg)	(lb)	(pulg)		(pulg)		(pulg)	(pulg)		(lb)
KH-125P	16.500	8.625	12.750	12.250	80	14.750	16	10.250	16	_	_	_	_
KH-166P	20.500	12.750	16.875	16.375	105	18.875	20	14.375	20	_	_	_	_
KH-225P	26.700	18.500	22.750	22.250	150	24.500	18	20.500	18	_	_	_	_
KH-275P	31.700	23.500	27.750	27.250	185	29.500	24	25.500	24	_	_	_	_
KH-325P	36.700	28.500	32.750	32.250	220	34.500	28	30.500	28	_	_	_	_
Tolerancias	±.050	±.050	*Nota	*Nota		⊕.030		.030					

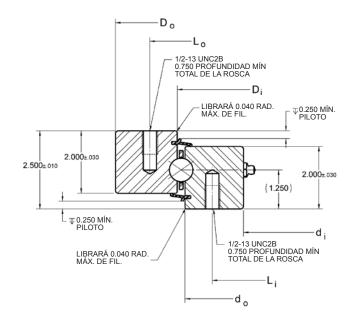
Engranaje externo

						DAT	OS DE	EL ORIFIC	Ю		ATOS DE		
N/P Kaydon	DESCRIP	CIÓN DI	E DIMEN	ISIONES	Y PESO	ANIL EXTER		ANIL INTER		EVC	GRANAJI DLVENTE 2 = 20°, AG	FD	CLASIFICACIÓN DEL DIENTE DEL ENGRANAJE F _z
	D _o	d _i	D _i	d _o	G APROX.	L _o	n _o	L	n _i	D ₂	b ₂	z ₂	-
	(pulg)	(pulg)	(pulg)	(pulg)	(lb)	(pulg)		(pulg)		(pulg)	(pulg)		(lb)
KH-125E	16.500	8.625	12.750	12.250	75	14.750	16	10.250	16	16.167	2.000	97	5,480
KH-166E	20.500	12.750	16.875	16.375	100	18.875	20	14.375	20	20.167	2.000	121	5,570
KH-225E	26.667	18.500	22.750	22.250	140	24.500	18	20.500	18	26.333	2.000	158	5,670
KH-275E	31.667	23.500	27.750	27.250	175	29.500	24	25.500	24	31.333	2.000	188	5,700
KH-325E	36.667	28.500	32.750	32.250	205	34.500	28	30.500	28	36.333	2.000	218	5,730
Tolerancias	+0/020	±.050	*Nota	*Nota		⊕.030		⊕.030			±.030		

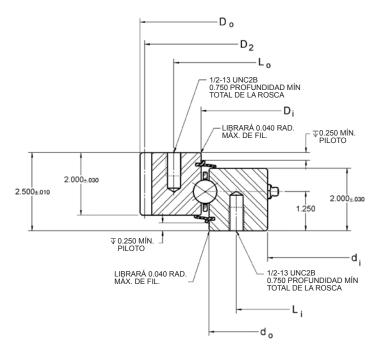
Capacidades dinámicas e intermitentes

	Din	ámica	Interr	mitente
Tamaño	Axial (lb)	Momento (lb-pie)	Axial (lb)	Momento (lb-pie)
KH-125	32,000	13,100	60,000	25,800
KH-166	36,000	20,500	82,800	45,200
KH-225	40,000	30,500	115,200	56,000
KH-275	43,000	39,600	142,000	75,000
KH-325	45,000	48,100	167,000	92,000

Nota: Capacidades dinámicas- L_{10} basadas en millones de revoluciones. Los valores no se aplican de manera simultánea.

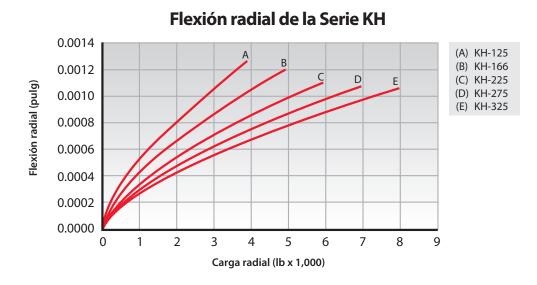

Límites de capacidad intermitente-individual para carga máxima cuando el modo normal de operación es una aplicación y rotación de carga intermitente.

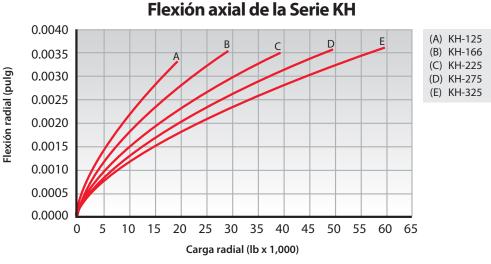
^{*}Nota:

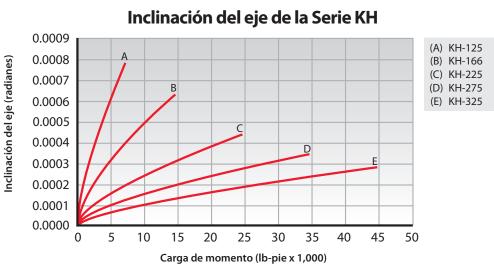

 $D_i = d_o = +0/-0.002$ tolerancia para el KH-125 al KH-225.

 $D_i = d_o = +0/-0.003$ tolerancia para el KH-275 al KH-325.

Serie KH

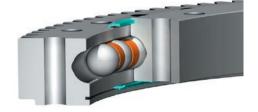



Sin engranaje



Con engranaje externo

Gráfica de flexión de la Serie KH



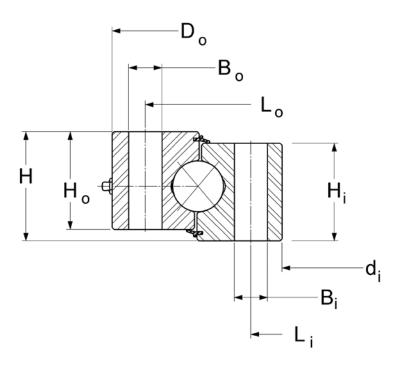
Introducción

Las coronas de orientación de la Serie XT son diseños a la medida del cliente que tienen una sección transversal rectangular y están disponibles en tamaños de diámetro exterior de hasta 218 pulgadas (5500 mm). Son idóneas para una amplia gama de aplicaciones en las que nuestra serie de productos estándar no satisface sus requerimientos de tamaño, capacidad o peso.

Características de diseño

La configuración interna consiste en pistas de arco gótico de ranura profunda y complemento máximo de bolas. Esto se traduce en un diseño de cuatro puntos de contacto que proporciona capacidades excepcionales de carga de momento, de empuje y radial. Se proporcionan sellos integrados para ayudar en la exclusión de contaminantes.

Los rodamientos de la Serie XT están disponibles en configuraciones con engranaje interno, con engranaje externo y sin engranaje.

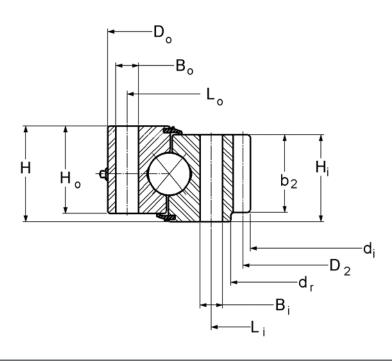

Disponibilidad

Los rodamientos de la Serie XT se fabrican bajo pedido y se pueden personalizar para la aplicación específica.

Aplicaciones

Los rodamientos de la Serie XT se han utilizado con éxito en una amplia gama de aplicaciones, que incluyen:

- Grúas
- Elevadores aéreos
- Excavadoras
- Turbinas de viento
- Grúas utilitarias
- Cargadores de troncos y cortadoras apiladoras
- Pulpos sujetadores
- Equipo de minería

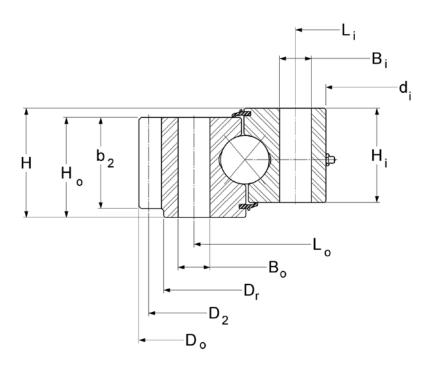


Sin engranaje

			DESCF	RIPCIÓN DE DI	MENSIONES Y I	PESO			
N/P Kaydon	D _o	d _i	н	H _o	H _i	D _r *	d _r *	G APROX.	
	(pulg)	(pulg)	(pulg)	(pulg)	(pulg)	(pulg)	(pulg)	(lb)	
12740001	24.650	16.250	2.375	2.063	2.063	_	_	145	
12750001	26.900	18.500	2.375	2.063	2.063	_	_	155	
12770001	29.650	21.250	2.375	2.063	2.063	_	_	180	
12775001	33.534	23.125	2.875	2.563	2.563	_	_	305	
12780001	38.201	27.750	2.875	2.563	2.563	_	_	350	
12785001	41.850	28.750	3.250	2.880	2.880	_	_	530	
12790001	47.444	34.250	4.250	3.875	3.875	_	_	835	
16289001	61.250	52.325	3.540	2.800	2.800	_	_	585	
16389001	87.992	69.094	6.024	5.512	5.512	_	_	3,330	
16290001	129.000	113.000	5.500	5.000	5.000	_	_	3,950	
16291001	178.000	162.000	5.500	5.000	5.000	_	_	5,350	

^{*}No existen diámetros internos o externos para este tipo.

	DA	TOS DE	L ORIFIC	10			DATO	S DEL EN	IGRAN	NAJE		CLASIFICACIÓN	CLASIFICACIÓN
ANILLO	O EXT	ERNO	ANILL	O INT	ERNO			c. = 2 (0°			DEL DIENTE DEL ENGRANAJE	DEL MOMENTO DEL RODAMIENTO
L _o	n _o	В	L _i	n _i	B _i	FORMA DEL	D ₂	P _d o (m)	z ₂	x ₂	b ₂	F _z	C _{rm}
(pulg)		(pulg)	(pulg)		(pulg)	DIENTE	(pulg)	O (,			(pulg)	(lb)	(lb-pie)
22.250	16	0.813	17.750	20	0.813	_	_	_	_	_	_	_	159,000
24.500	18	0.813	20.000	24	0.813	_	_	_	_	_	_	_	188,000
27.250	24	0.813	22.750	28	0.813	_	_	_	_	_	_	_	232,000
30.625	18	0.938	24.875	24	0.938	_	_	_	_	_	_	_	338,000
35.250	24	0.938	29.500	28	0.938	_	_	_	_	_	_	_	443,000
38.000	20	1.063	31.000	24	1.063	_	_	_	_	_	_	_	587,000
43.875	24	1.188	36.250	28	1.188	_	_	_	_	_	_	_	873,000
59.625	30	0.844	54.000	30	0.844	_	_	_	_	_	_	_	348,000
83.543	52	1.535	73.543	52	1.535	_	_	_	_	_	_	_	3,675,000
125.500	72	1.063	116.500	72	1.063	_	_	_	_	_	_	_	1,337,000
174.500	96	1.063	165.500	96	1.063	_	_	_	_	_	_	_	2,258,000

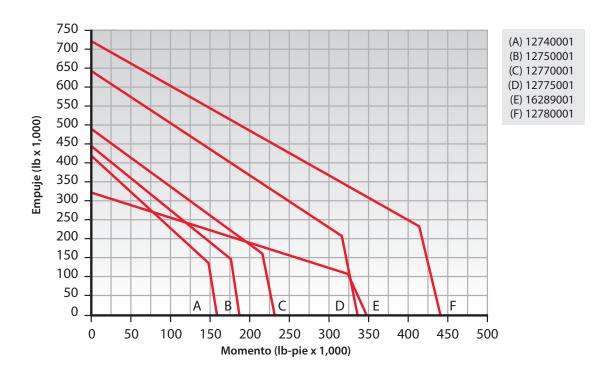


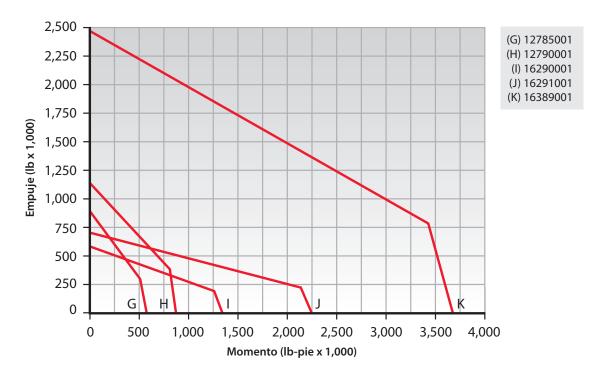
Engranaje interno

DATOS DEL			DESCR	RIPCIÓN DE DIM	MENSIONES Y F	PESO			
ORIFICIO	D _o	d _i	Н	H _o	H _i	D _r *	d _r *	G APROX.	
	(pulg)	(pulg)	(pulg)	(pulg)	(pulg)	(pulg)	(pulg)	(lb)	
16292001	16.625	9.714	1.968	1.732	1.732	_	_	65	
16293001	20.486	12.750	2.060	2.000	2.000	_	_	105	
16294001	25.750	16.850	2.750	2.375	2.375	_	_	180	
16295001	28.937	19.600	2.834	2.480	2.480	_	_	225	
16296001	34.252	24.921	2.834	2.480	2.480	_	_	270	
16390001	40.880	30.560	3.380	2.560	3.000	_	32.375	375	
16374001	48.250	36.400	4.000	3.500	3.500	_	38.250	660	
16297001	54.375	41.280	5.000	3.875	4.625	_	43.000	1,090	
16298001	62.250	47.760	4.875	4.375	4.375	_	49.325	1,370	
16299001	72.500	57.000	6.000	5.000	5.000	_	59.380	1,900	
16300001	81.750	62.267	6.500	5.625	6.125	_	64.750	3,080	
16301001	102.500	85.360	7.440	6.780	5.660	_	88.380	3,750	
16302001	117.000	93.600	7.125	6.500	6.500	_	96.375	6,200	
16303001	148.425	135.039	4.724	4.134	4.134	_	136.890	3,000	
16304001	168.000	151.700	6.000	5.500	5.500	_	153.940	5,500	

^{*}No existen diámetros externos para este tipo.

	DA	TOS DE	L ORIFIC	10			DATO	DEL EN	IGRAN	IAJE		CLASIFICACIÓN	CLASIFICACIÓN
ANILLO	О ЕХТ	ERNO	ANILL	O INTI	ERNO			ಣ= 2 (0°			DEL DIENTE DEL ENGRANAJE	DEL MOMENTO DEL RODAMIENTO
L _o	n _o	Во	L _i	n _i	B _i	FORMA DEL	D ₂	P _d o (m)	z ₂	x ₂	b ₂	F _z	C _{rm}
(pulg)		(pulg)	(pulg)		(pulg)	DIENTE	(pulg)	J (,			(pulg)	(lb)	(lb-pie)
15.354	18	0.594	11.614	24	0.594	FS	10.000	5/7	50	0	1.732	7,800	71,800
18.875	20	0.594	14.375	20	0.594	FS	13.000	5/7	65	0	2.000	8,800	81,300
24.500	18	0.688	19.500	24	0.688	SD	17.250	4	69	0	2.375	12,750	143,000
27.165	24	0.813	22.126	30	0.813	SD	20.000	4	80	0	2.480	13,250	244,000
32.480	30	0.813	27.441	36	0.813	SD	25.250	4	101	15	2.480	12,900	343,000
39.250	40	0.813	33.750	40	0.813	SD	31.200	2.5	78	0	2.750	20,230	461,000
46.125	30	0.938	39.875	36	0.938	FD	37.200	2.5	93	0	3.250	21,290	720,000
52.500	48	0.938	45.250	48	0.938	SD	41.600	2.5	104	40	3.000	24,900	1,131,000
59.750	48	1.063	51.750	48	1.063	SD	48.400	2.5	121	0	4.312	38,500	1,650,000
69.750	48	1.063	61.500	48	1.063	FD	58.000	2	116	0	4.500	46,600	1,831,000
78.750	52	1.312	67.625	52	1.312	SD	63.333	1.5	95	0	5.000	75,450	3,764,000
99.803	60	1.312	91.142	60	1.312	FD	86.667	1.5	130	0	5.500	81,500	3,457,000
113.000	52	1.562	100.000	52	1.562	SD	94.667	1.5	142	0	4.750	69,900	6,125,000
146.457	72	0.866	138.583	72	0.866	FD	135.827	(10)	345	0	3.543	25,300	1,013,000
165.120	90	1.313	156.000	90	1.313	SD	152.500	2	305	0	5.000	45,400	3,003,000

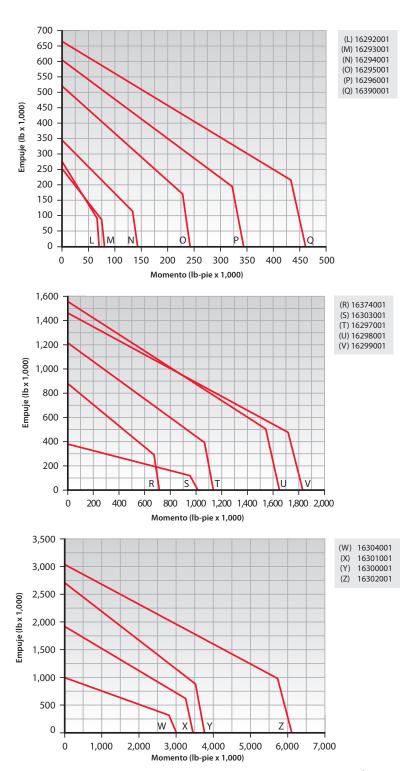

Engranaje externo


			DESC	RIPCIÓN DE DI	MENSIONES Y	PESO			
N/P Kaydon	D _o	d _i	н	H _o	H _i	D _r *	d _r *	G APROX.	
	(pulg)	(pulg)	(pulg)	(pulg)	(pulg)	(pulg)	(pulg)	(lb)	
16305001	9.500	4.813	1.344	1.141	1.141	_	_	15	
16306001	21.286	12.438	2.812	2.656	2.656	_	_	140	
16307001	30.457	19.000	3.625	3.250	3.250	_	_	330	
12440001	39.400	29.500	3.875	3.031	3.031	38.375	_	390	
16308001	50.640	37.750	4.000	3.620	3.620	_	_	770	
12288001	54.300	42.000	4.625	3.625	3.625	52.250	_	770	
16309001	56.240	41.370	4.750	3.850	4.400	_	_	1,133	
16310001	61.300	47.125	5.875	4.688	4.688	59.375	_	1,420	
16311001	75.000	54.500	6.500	5.875	5.875	72.560	_	2,865	
16312001	85.067	66.750	7.120	6.500	6.620	82.120	_	3,410	
16313001	98.800	78.400	6.625	6.000	6.000	98.000	_	4,000	
16314001	134.331	118.110	5.512	5.000	5.000	130.984	_	3,600	
16315001	170.079	146.850	6.024	5.512	5.512	_	_	8,030	
16316001	196.850	173.622	7.000	6.250	6.250	192.716	_	10,100	
16317001	218.268	197.244	5.512	5.039	5.039	216.142	_	8,700	

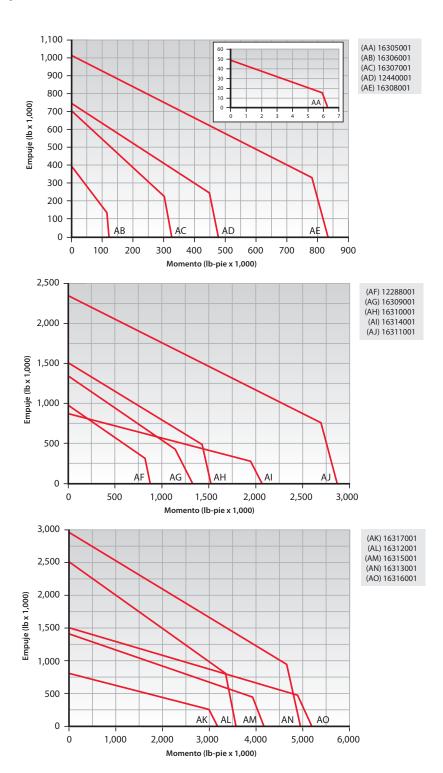
^{*}No existen diámetros internos o externos para este tipo.

	DA	TOS DE	L ORIFIC	10			DATOS	DEL EN	GRAN <i>A</i>	JE		CLASIFICACIÓN	CLASIFICACIÓN
ANILLO	O EXT	ERNO	ANILL	O INTI	ERNO			α= 20				DEL DIENTE DEL ENGRANAJE	DEL MOMENTO DEL RODAMIENTO
L _o	n _o	В	L _i	n _i	B _i	FORMA DEL	D ₂	P _d o (m)	z ₂	x ₂	b ₂	F _z	C _{rm}
(pulg)		(pulg)	(pulg)		(pulg)	DIENTE	(pulg)	O (,			(pulg)	(lb)	(lb-pie)
8.188	12	0.354	5.500	12	0.354	FD	9.250	8	74	0	1.141	2,470	6,200
19.156	16	0.813	13.750	18	0.813	FS	21.000	5/7	105	0	2.656	10,570	122,500
27.375	30	0.813	20.625	29	0.813	SD	30.000	3.5	105	0	3.250	17,400	322,000
36.750	36	0.813	31.250	39	0.813	SD	39.000	4	156	0	2.750	14,000	477,000
47.000	30	1.031	40.000	29	1.031	SD	50.000	2.5	125	0	3.620	27,400	832,000
50.375	30	1.062	44.125	36	1.062	SD	53.500	2	107	0	3.000	28,150	875,000
52.000	28	1.313	44.000	28	1.313	SD	55.600	2.5	139	0	3.850	29,300	1,220,000
57.375	40	1.063	49.250	44	1.063	SD	60.500	2	121	0	4.000	40,850	1,522,000
70.250	40	1.313	58.500	40	1.313	FD	74.000	2	148	0	4.000	36,600	2,873,000
80.125	48	1.313	69.250	48	1.313	SD	84.000	1.5	126	0	6.000	81,900	3,575,000
94.250	72	1.562	82.500	60	1.812	SD	98.000	2	196	0	4.750	49,600	4,951,000
128.976	72	1.260	120.512	72	1.260	FD	132.520	(18)	187	.28	4.724	61,800	2,070,000
162.598	72	1.535	150.787	72	1.535	FD	168.504	(20)	214	0	5.512	80,500	4,176,000
189.370	80	1.535	177.559	80	1.535	FD	195.276	(20)	248	0	5.512	81,000	5,210,000
212.598	90	1.260	200.787	90	1.260	FD	217.323	(12)	460	0	3.780	31,100	3,190,000

Gráfica de carga de la serie XT – Sin engranaje



Las gráficas de clasificación solo se aplican para las condiciones de operación definidas como OPERACIÓN NORMAL en la Sección 2 y cuando se instalan y se les da mantenimiento como se define en la Sección 3 de este catálogo. El aumento del diámetro del rodamiento no necesariamente garantiza el aumento de la clasificación del rodamiento, debido a las variaciones en los elementos de rodadura, la sección del anillo y los complementos de sujeción. Para obtener información sobre las bases para el desarrollo de las Gráficas de clasificación, consulte el párrafo CLASIFICACIÓN DE CARGA en la Sección 2.


Gráfica de carga de la serie XT – Engranaje interno

Las gráficas de clasificación solo se aplican para las condiciones de operación definidas como OPERACIÓN NORMAL en la Sección 2 y cuando se instalan y se les da mantenimiento como se define en la Sección 3 de este catálogo. El aumento del diámetro del rodamiento no necesariamente garantiza el aumento de la clasificación del rodamiento, debido a las variaciones en los elementos de rodadura, la sección del anillo y los complementos de sujeción. Para obtener información sobre las bases para el desarrollo de las Gráficas de clasificación, consulte el párrafo CLASIFICACIÓN DE CARGA en la Sección 2.

Gráfica de carga de la serie XT – Engranaje externo

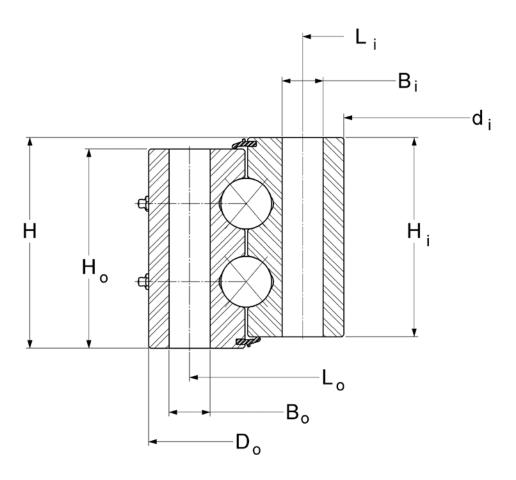
Las gráficas de clasificación solo se aplican para las condiciones de operación definidas como OPERACIÓN NORMAL en la Sección 2 y cuando se instalan y se les da mantenimiento como se define en la Sección 3 de este catálogo. El aumento del diámetro del rodamiento no necesariamente garantiza el aumento de la clasificación del rodamiento, debido a las variaciones en los elementos de rodadura, la sección del anillo y los complementos de sujeción. Para obtener información sobre las bases para el desarrollo de las Gráficas de clasificación, consulte el párrafo CLASIFICACIÓN DE CARGA en la Sección 2.

Introducción

La Serie DT consiste en el rodamiento de bolas de ocho puntos Kaydon desarrollada originalmente para proporcionar capacidad máxima de carga para un envolvente dado y diámetro circular entre pernos. Proporciona hasta 80% de mayor capacidad sobre el de un diseño de cuatro puntos de una sola hilera del mismo diámetro y círculos de pernos. Sin embargo, la Serie DT tiene un perfil más pequeño que un diseño de tres hileras de rodillos.

Características de diseño

La configuración interna consiste en dos pistas de arco gótico de ranura profunda, cada una con un complemento máximo de bolas, ubicadas en los anillos interno y externo. Esto se traduce en un total de ocho superficies donde las bolas pueden hacer contacto en cualquier momento, proporcionando capacidades excepcionales de carga de momento, de empuje y radiales. A través de una fabricación precisa, las pistas están hermanadas cuidadosamente para proporcionar un alto grado de distribución de carga. Se proporcionan sellos integrados para ayudar en la exclusión de contaminantes.


Disponibilidad

Los rodamientos de la Serie DT se fabrican bajo pedido con un patrón de orificio totalmente personalizado para la retención del rodamiento y un engranaje interno o externo u otro mecanismo de transmisión.

Aplicaciones

Los rodamientos de la Serie DT se han utilizado con éxito en aplicaciones de trabajo pesado que incluyen:

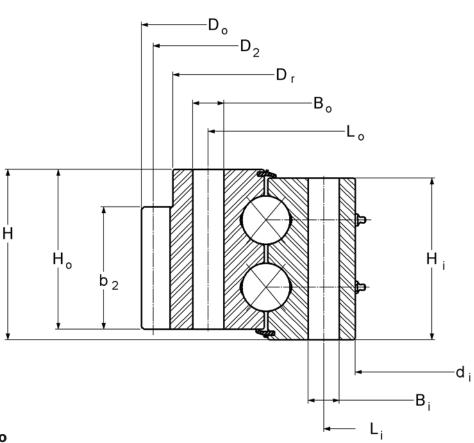
- Excavadoras grandes
- Grúas grandes
- Equipo de minería
- Turbinas de viento
- Telescopios

Sin engranaje

			DES	CRIPCIÓN DE I	DIMENSIONES	Y PESO			
N/P Kaydon	D _o	d _i	н	H _o	H _i	D _r *	d _r *	G APROX.	
	(pulg)	(pulg)	(pulg)	(pulg)	(pulg)	(pulg)	(pulg)	(lb)	
16282001	20.375	12.250	4.500	4.185	4.185	_	_	210	
16283001	29.750	18.620	7.000	6.500	6.551	_	_	645	
16284001	41.417	30.236	7.480	6.890	6.890	_	_	1,060	
16015001	56.250	43.750	6.750	6.380	6.380	_	_	1,520	
16285001	75.750	59.750	8.750	8.375	8.375	_	_	3,540	
16286001	131.000	114.000	8.000	7.500	7.500	_	_	6,950	
13004001	170.000	150.000	9.875	9.250	9.250	_	_	11,950	

^{*}No existen diámetros internos o externos para este tipo.

	DA	TOS DE	L ORIFIC	10			DATO	S DEL E	NGRAN	AJE		CLASIFICACIÓN	CLASIFICACIÓN
ANILLO	Э ЕХТ	ERNO	ANILL	O INT	ERNO			C1 = 2	20°			DEL DIENTE DEL ENGRANAJE	DEL MOMENTO DEL RODAMIENTO
L _o	n _o	В	L _i	n _i	B _i	FORMA	D ₂	P _d o (m)	z ₂	x ₂	b ₂	F _z	C _{rm}
(pulg)		(pulg)	(pulg)		(pulg)	DEL DIENTE	(pulg)				(pulg)	(lb)	(lb-pie)
18.875	20	0.688	13.625	20	0.688	_	_	_	_	_	_	_	102,500
27.875	34	0.813	20.375	32	0.813	_	_	_	_	_	_	_	363,100
39.449	36	0.866	32.205	36	0.866	_	_	_	_	_	_	_	734,800
53.630	36	1.313	46.380	36	1 1/4-7	_	_	_	_	_	_	_	2,083,600
73.625	48	1.004	62.375	36	1.250	_	_	_	_	_	_	_	2,934,900
127.000	64	1.313	118.000	64	1.313	_	_	_	_	_	_	_	5,666,800
166.000	64	1.625	154.000	64	1.625	_	_	_	_	_	_	_	8,098,000



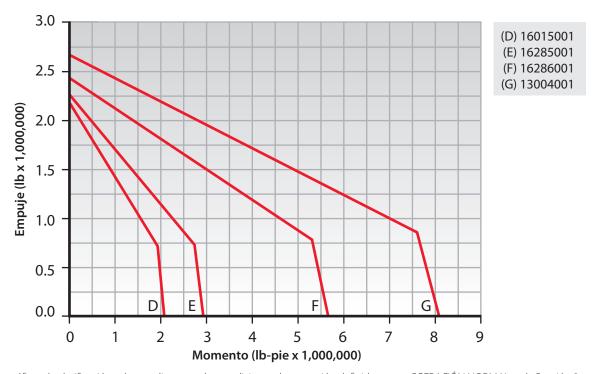
Engranaje interno

	DESCRIPCIÓN DE DIMENSIONES Y PESO												
N/P Kaydon	D _o	d _i	н	H _o	H _i	D _r *	d _r *	G APROX.					
	(pulg)	(pulg)	(pulg)	(pulg)	(pulg)	(pulg)	(pulg)	(lb)					
16274001	56.693	43.661	5.472	5.118	5.118	_	46.142	1,200					
16275001	66.000	47.600	8.000	7.625	7.625	_	50.125	2,820					
16276001	70.500	50.200	8.625	8.312	8.312	_	52.125	3,700					
16277001	81.890	65.248	5.591	5.197	5.197	_	67.520	2,460					
16278001	94.173	77.008	7.126	6.732	6.732	_	79.291	3,410					
16279001	109.375	87.170	9.312	8.937	8.000	_	87.170	7,100					
16280001	121.000	98.400	8.750	8.438	8.438	_	102.250	7,440					
16281001	141.000	114.941	11.180	10.000	10.430	_	120.710	14,850					

^{*}No existen diámetros externos para este tipo.

	DA	TOS DEI	L ORIFIC	10			DATOS	DEL EN	IGRAN	AJE		CLASIFICACIÓN	CLASIFICACIÓN
ANILLO	O EXT	ERNO	ANILL	O INTI	ERNO			ധ= 2	0°			DEL DIENTE DEL ENGRANAJE	DEL MOMENTO DEL RODAMIENTO
L _o	n _o	B _o	L _i	n _i	B _i	FORMA DEL	D ₂	P _d o (m)	z ₂	x ₂	b ₂	F _z	C _{rm}
(pulg)		(pulg)	(pulg)		(pulg)	DIENTE	(pulg)	O (,			(pulg)	(lb)	(lb-pie)
54.724	48	0.866	48.425	48	0.866	FD	44.094	(14)	80	5	4.134	48,640	1,225,400
63.000	42	1.625	53.000	45	1.625	SD	48.667	1.5	73	0	5.500	78,680	3,921,100
67.625	36	1 1/2-6	55.000	40	1.625	SD	51.000	2	102	0	5.000	56,400	4,863,400
78.740	54	1.299	70.866	54	1.299	FD	65.669	(12)	139	5	3.937	41,140	2,534,900
90.787	60	1.535	82.677	60	1.535	FD	77.480	(12)	164	5	3.937	40,770	3,896,200
102.953	66	1.593	93.504	66	1.593	FD	87.874	(18)	124	5	6.000	94,870	9,075,400
117.000	72	1.625	105.000	72	1.625	FD	100.000	1.25	125	0	6.000	106,940	8,751,800
133.661	90	1.625	124.252	90	1.625	FD	116.221	(18)	165	5	10.000	155,340	12,625,000

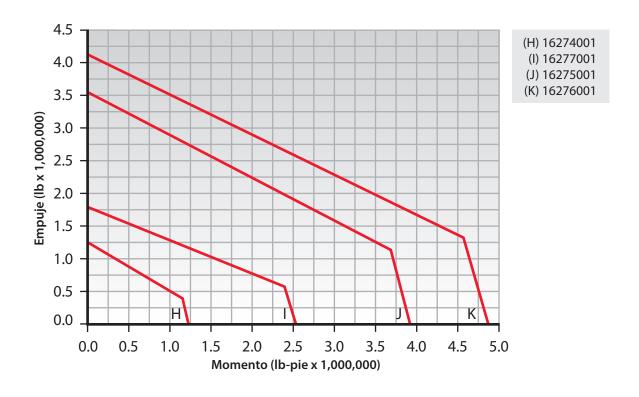

Engranaje externo

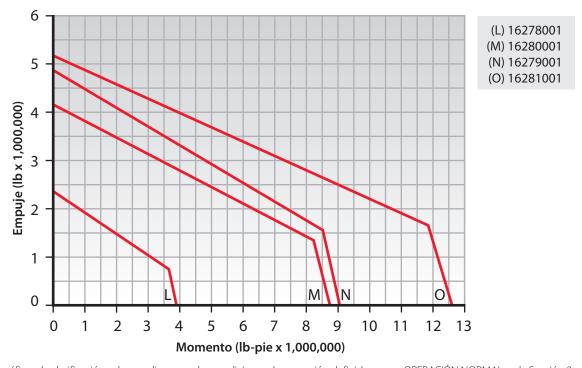

			DESC	RIPCIÓN DE DI	IMENSIONES Y	PESO		
N/P Kaydon	D _o	d _i	н	H _o	H _i	D _r *	d _r *	G APROX.
	(pulg)	(pulg)	(pulg)	(pulg)	(pulg)	(pulg)	(pulg)	(lb)
16258001	17.086	10.250	3.313	3.000	3.000	17.086	_	105
16264001	50.016	38.504	5.512	5.157	4.567	48.425	_	870
16265001	56.240	41.370	7.125	6.688	6.688	54.675	_	1,730
16266001	68.800	51.250	7.375	6.875	7.000	68.800	_	2,850
16267001	75.394	58.500	6.110	5.750	5.750	73.307	_	2,450
16268001	89.181	71.400	7.090	6.650	6.730	96.566	_	3,360
16269001	94.742	72.250	9.125	8.375	8.750	92.500	_	5,560
16270001	102.992	84.134	7.205	6.654	6.654	99.331	_	3,970
16271001	124.800	98.375	11.250	9.375	10.750	124.800	_	10,500
16272001	143.800	114.000	11.062	10.250	10.437	143.800	_	14,980
16273001	180.000	150.000	10.625	10.000	10.000	175.250	_	22,100

^{*}No existen diámetros internos o externos para este tipo.

	DA	TOS DE	L ORIFIC	Ю			DATO	S DEL EN	IGRAN	AJE		CLASIFICACIÓN	CLASIFICACIÓN
ANILLO	O EXT	ERNO	ANILL	O INT	ERNO			o; = 2	0°			DEL DIENTE DEL ENGRANAJE	DEL MOMENTO DEL RODAMIENTO
L _o	n _o	B _o	L _i	n _i	B _i	FORMA DEL	D ₂	P _d o (m)	z ₂	x ₂	b ₂	F _z	C _{rm}
(pulg)		(pulg)	(pulg)		(pulg)	DIENTE	(pulg)	O (,			(pulg)	(lb)	(lb-pie)
15.354	18	0.563	11.614	24	0.563	FS	16.800	5/7	84	0	1.750	6,850	65,200
46.496	42	M24x3	40.551	48	1.024	FD	49.134	(8)	156	+.5	3.346	19,390	970,400
52.000	30	1.313	44.000	30	1.313	SD	55.600	2.5	139	0	4.000	30,480	2,132,100
64.250	36	1.438	55.000	42	1.438	FD	68.000	2	136	0	4.000	36,480	3,470,900
70.500	48	1.313	61.366	48	1.313	FD	74.016	(10)	188	+.8	4.130	31,400	3,335,700
83.622	60	1.299	74.016	60	1.299	FD	87.638	(14)	159	+.5	5.080	53,760	4,793,200
89.750	60	1.625	75.250	68	1.625	SD	94.000	2	188	0	5.500	55,490	8,669,000
95.906	64	1.299	87.205	68	1.535	FD	100.787	(20)	128	+.5	5.709	92,060	3,658,500
117.625	72	1.875	103.625	72	1.875	FD	123.200	1.25	154	0	6.000	86,780	14,639,200
136.625	72	2.156	121.375	72	2.156	SD	143.000	2	286	0	8.000	85,120	18,293,300
170.000	80	1.875	156.250	80	1.875	FD	178.000	1	178	0	7.000	129,080	18,000,000

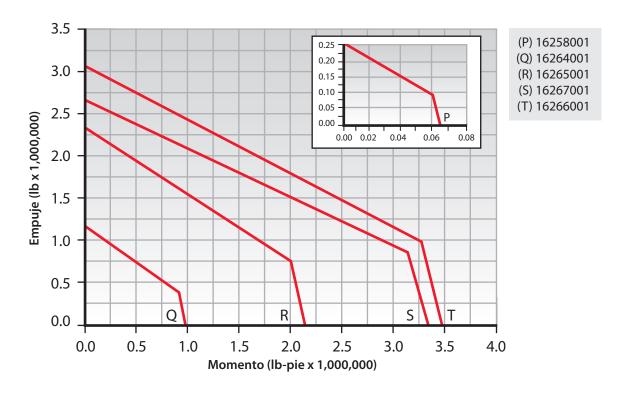
Gráfica de carga de la serie DT – Sin engranaje

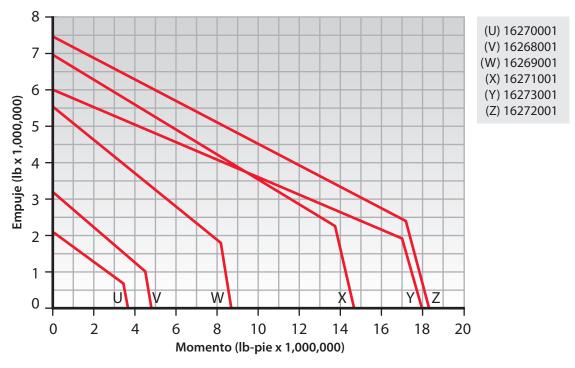




Las gráficas de clasificación solo se aplican para las condiciones de operación definidas como OPERACIÓN NORMAL en la Sección 2 y cuando se instalan y se les da mantenimiento como se define en la Sección 3 de este catálogo. El aumento del diámetro del rodamiento no necesariamente garantiza el aumento de la clasificación del rodamiento, debido a las variaciones en los elementos de rodadura, la sección del anillo y los complementos de sujeción. Para obtener información sobre las bases para el desarrollo de las Gráficas de clasificación, consulte el párrafo CLASIFICACIÓN DE CARGA en la Sección 2.

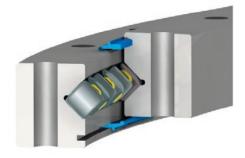
Gráfica de carga de la serie DT – Engranaje interno





Las gráficas de clasificación solo se aplican para las condiciones de operación definidas como OPERACIÓN NORMAL en la Sección 2 y cuando se instalan y se les da mantenimiento como se define en la Sección 3 de este catálogo. El aumento del diámetro del rodamiento no necesariamente garantiza el aumento de la clasificación del rodamiento, debido a las variaciones en los elementos de rodadura, la sección del anillo y los complementos de sujeción. Para obtener información sobre las bases para el desarrollo de las Gráficas de clasificación, consulte el párrafo CLASIFICACIÓN DE CARGA en la Sección 2.

Gráfica de carga de la serie DT – Engranaje externo



Las gráficas de clasificación solo se aplican para las condiciones de operación definidas como OPERACIÓN NORMAL en la Sección 2 y cuando se instalan y se les da mantenimiento como se define en la Sección 3 de este catálogo. El aumento del diámetro del rodamiento no necesariamente garantiza el aumento de la clasificación del rodamiento, debido a las variaciones en los elementos de rodadura, la sección del anillo y los complementos de sujeción. Para obtener información sobre las bases para el desarrollo de las Gráficas de clasificación, consulte el párrafo CLASIFICACIÓN DE CARGA en la Sección 2.

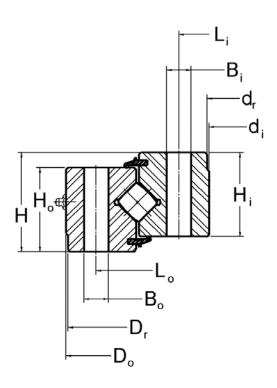
La Serie XR consiste en rodamientos de rodillos transversales Kaydon. Proporcionan un alto grado de rigidez y un torque de rotación bajo dentro de una envolvente mínima. Este diseño se debe considerar cuando un rodamiento de bolas de cuatro puntos de contacto no satisface los requerimientos de desempeño operativo para el torque y la rigidez.

Características de diseño

La configuración interna consiste en rodillos cilíndricos en una ranura en forma de V en cada anillo. Los rodillos están orientados con los ejes de rotación alternados. Posicionados de esta manera, el rodamiento acepta todas las combinaciones de cargas radiales, de empuje y de momento. El torque de rotación es menor que en un diseño de bolas de cuatro puntos de contacto ya que cada rodillo solo transmite la carga en una sola dirección y la mayor área de contacto y geometría de un rodillo en comparación con una bola proporciona un mayor grado de firmeza y rigidez.

Un rodillo de aproximadamente el mismo tamaño que una bola tiene mayor capacidad para transportar carga. Sin embargo, debido a que no todos los rodillos están orientados en una dirección, su capacidad de carga de empuje y de momento es menor que la de un rodamiento de bolas de cuatro puntos.

Se pueden proporcionar dientes de engranaje u otros mecanismos de transmisión en el anillo de apoyo interno o externo, y se puede agregar su elección del patrón de orificio para la retención del rodamiento.

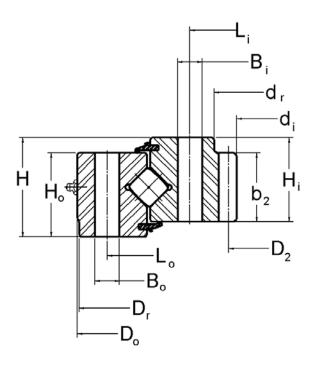

Disponibilidad

Los rodamientos de la Serie XR se fabrican de manera personalizada para ajustarse al diseño y especificación.

Aplicaciones

Los rodamientos de la Serie XR se han utilizado con éxito en aplicaciones que requieren rigidez adicional con un requerimiento de torque bajo que incluyen:

- Radares
- Torretas militares
- Máguinas herramientas
- Máquinas de perforación de túneles

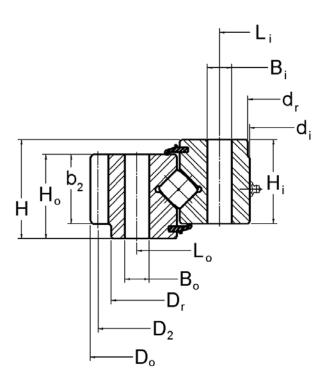


Sin engranaje

		DEC	CDIDCIÓ	NDF DI	MENCIO	NES Y PI	-60			D	ATOS DE	L ORIFICI	0		
		DES	CKIPCIC	JN DE DI	MENSIC	INES I PI	:50		ANILL	O EXT	ERNO	ANILI	LO INT	ERNO	
N/P Kaydon	D _o	d _i	Н	H _o	H _i	D _r	d _r	G APROX.	L _o	n _o	В	L _i	n _i	B _i	
	(pulg)	(pulg)	(pulg)	(pulg)	(pulg)	(pulg)	(pulg)	(lb)	(pulg)		(pulg)	(pulg)		(pulg)	
16318001	11.811	5.512	1.417	1.181	1.181	_	_	30	10.630	6	M16x2	6.693	6	M16x2	
16319001	15.886	9.055	2.165	1.772	1.850	_	_	65	14.094	24	0.512	10.197	24	0.512	
16320001	27.362	18.779	3.031	2.520	2.244	27.283	18.897	185	25.197	28	0.709	20.000	28	0.709	
16321001	35.312	26.625	2.953	2.863	2.863	35.251	26.750	325	34.000	24	1/2-13	29.000	24	0.590	
16322001	46.250	34.250	4.250	3.880	3.880	_	34.380	765	44.000	28	1-8	36.250	28	1.063	
16323001	56.380	46.770	3.820	3.470	3.430	56.295	46.850	710	40.000	36	0.813	33.875	36	3/4-16	
16324001	85.000	74.000	3.750	3.250	3.250	84.880	74.120	1,190	83.000	42	0.938	76.000	42	0.938	
16325001	95.000	82.000	4.000	3.500	3.500	94.875	82.063	1,660	93.000	48	1.063	85.000	48	1.063	
16326001	131.890	112.205	7.874	6.496	7.087	131.250	120.866	6,500	127.559	40	M36x3	116.535	40	1.496	
16327001	158.661	140.945	8.819	6.654	6.654	_	_	6,400	155.315	92	1.654	144.291	92	1.654	

Nota: Las capacidades son dinámicas y se basan en una vida L₁₀ de 1 millón de revoluciones de acuerdo con la Norma 11-1990 de la ABMA. Los valores mencionados no se aplican de manera simultánea. La sección transversal del anillo y la configuración de la unión atornillada utilizada pueden conducir a clasificaciones de capacidad del rodamiento más bajas.

	DAT	OS DEL EN	IGRANA	/JE		CLASIFICACIÓN	САРА	CIDADES DINÁN	MICAS
		α = 20)°			DEL DIENTE DEL ENGRANAJE	VIDA L ₁₀ DE	I MILLÓN DE RE	VOLUCIONES
FORMA DEL	D ₂	P _d o (m)	z ₂	x ₂	b ₂	F _z	RADIAL	EMPUJE	MOMENTO
DIENTE	(pulg)				(pulg)	(lb)	(lb)	(lb)	(lb-pie)
_	_	_	_	_	_	_	19,150	22,340	7,530
_	_	_	_	_	_	_	36,850	42,830	20,140
_	_	_	_	_	_	_	64,560	73,730	65,660
_	_	_	_	_	_	_	81,310	91,980	116,170
_	_	_	_	_	_	_	235,420	270,010	425,900
_	_	_	_	_	_	_	209,680	237,380	482,960
_	_	_	_	_	_	_	267,330	300,410	956,430
_	_	_	_	_	_	_	362,100	407,250	1,450,300
_	_	_	_	_	_	_	762,050	858,130	4,185,500
_	_	_	_	_	_	_	723,870	812,130	4,879,900



Engranaje interno

										_			_	
		DEC	CDIDCIÓ	ÁN DE DI	MENCIO	NES Y PI	550			D	ATOS DE	L ORIFICI	0	
		DES	CNIPCIC	JN DE DI	MENSIO	INES I FI	-30		ANILL	.O EX1	ERNO	ANILI	O INT	ERNO
N/P Kaydon	D _o	d _i	Н	Н。	H _i	D _r	d _r	G APROX.	L _o	n _o	Во	L _i	n _i	B _i
	(pulg)	(pulg)	(pulg)	(pulg)	(pulg)	(pulg)	(pulg)	(lb)	(pulg)		(pulg)	(pulg)		(pulg)
16328001	26.700	18.667	2.500	2.000	2.000	_	_	130	24.500	18	1/2-13	20.500	18	1/2-13
16329001	36.000	24.160	3.880	3.380	3.380	_	_	465	33.250	24	0.813	27.250	30	3/4-10
16330001	41.500	30.320	4.190	3.370	4.000	_	32.360	510	40.000	36	0.807	33.500	36	3/4-16
16331001	41.970	30.828	3.350	2.560	2.950	41.929	_	400	39.961	24	M20x2.5	34.646	24	M20x2.5
16332001	54.740	44.400	4.500	3.750	4.130	_	46.380	500	53.000	36	0.922	48.000	36	7/8-14
16333001	78.819	62.913	5.906	4.921	4.921	_	65.157	2,050	76.575	48	1.181	67.520	48	1.181
16334001	114.000	95.000	6.000	5.500	5.500	_	97.500	4,250	111.000	48	1.063	100.000	48	1-8
16335001	121.496	97.717	6.772	6.299	6.299	_	_	6,080	117.795	72	1.535	105.512	72	1.535
16336001	142.000	123.200	6.000	5.500	5.500	_		5,370	139.000	72	1.063	128.000	72	1.063

Nota: Las capacidades son dinámicas y se basan en una vida L₁₀ de 1 millón de revoluciones de acuerdo con la Norma 11-1990 de la ABMA. Los valores mencionados no se aplican de manera simultánea. La sección transversal del anillo y la configuración de la unión atornillada utilizada pueden conducir a clasificaciones de capacidad del rodamiento más bajas.

	DAT	OS DEL EN	IGRANA	/JE		CLASIFICACIÓN	CAPA	CIDADES DINÁ	MICAS
		α = 20	0°			DEL DIENTE DEL ENGRANAJE	VIDA L ₁₀ DE	1 MILLÓN DE RE	VOLUCIONES
FORMA	D ₂	P _d o (m)	z ₂	x ₂	b ₂	F _z	RADIAL	EMPUJE	MOMENTO
DEL DIENTE	(pulg)	O (,			(pulg)	(lb)	(lb)	(lb)	(lb-pie)
FD	19.000	6	114	0	2.000	6,345	64,620	73,810	65,430
SD	24.800	2.5	62	0	3.380	27,300	157,900	181,900	213,180
FD	30.800	2.5	77	400	3.500	27,600	220,820	254,250	362,220
FD	31.102	(10)	79	625	2.950	22,820	125,790	142,740	211,160
FD	45.200	2.5	113	0	3.750	28,600	205,410	232,690	460,450
FD	63.307	(12)	134	500	4.528	40,350	406,070	459,660	1,315,740
FD	96.000	2	192	0	5.000	54,550	500,930	563,230	2,389,570
FD	98.268	(24)	104	708	6.299	134,270	755,820	854,030	3,797,780
SD	124.000	2	248	0	5.500	50,440	675,310	758,460	4,057,130

Engranaje externo

		DEC	CDIDCIÓ	SN DE DI	MENGLO	NIEG V DI	-50			D	ATOS DEL	ORIFICI	0	
		DES	CKIPCIC	N DE DI	MENSIC	NES Y PE	:50		ANILL	.O EX1	ERNO	ANILL	O INTI	ERNO
N/P Kaydon	D _o	d _i	Н	H _o	H _i	D _r	d _r	G APROX.	L _o	n _o	Во	L _i	n _i	B _i
	(pulg)	(pulg)	(pulg)	(pulg)	(pulg)	(pulg)	(pulg)	(lb)	(pulg)		(pulg)	(pulg)		(pulg)
16337001	16.000	9.190	2.170	1.770	1.850	14.880	9.250	55	14.094	24	0.562	10.197	24	0.562
16338001	23.333	13.750	2.750	2.500	2.500	_	_	175	20.875	12	0.688	15.375	12	0.688
16339001	27.362	18.780	3.030	2.520	2.240	26.380	18.900	180	25.197	18	0.688	20.000	18	0.688
16340001	33.627	26.535	2.205	1.752	1.752	_	_	140	30.906	36	M12x1.75	27.480	40	0.551
16341001	36.333	24.500	4.690	4.310	3.880	35.500	24.625	580	33.625	24	0.813	26.125	24	0.813
16342001	45.050	34.180	3.930	3.360	3.470	42.840	34.250	470	41.338	24	0.866	35.826	24	0.866
16343001	51.040	40.000	4.000	3.500	3.500	_	_	680	48.200	36	0.813	41.800	36	0.813
16344001	63.150	47.480	5.118	4.409	4.409	61.063	47.559	1,420	58.819	36	1.023	50.394	36	1.023
16345001	70.510	53.540	5.040	4.330	4.330	_	_	1,460	65.354	42	1.063	55.906	42	1.063
16346001	85.866	75.250	3.300	2.800	2.800	_	_	920	82.750	48	0.813	77.250	48	0.813
16347001	100.667	84.000	6.500	6.500	4.000	98.750	84.250	3,240	95.000	48	1-8	87.000	48	1.063
16348001	159.843	141.732	6.142	5.748	5.748	_	_	5,480	154.528	100	1.299	144.685	100	1.299
16393001	209.843	188.583	7.047	6.417	6.024	206.299	188.858	9,750	202.362	100	1.299	191.339	100	1.299

Nota: Las capacidades son dinámicas y se basan en una vida L₁₀ de 1 millón de revoluciones de acuerdo con la Norma 11-1990 de la ABMA. Los valores mencionados no se aplican de manera simultánea. La sección transversal del anillo y la configuración de la unión atornillada utilizada pueden conducir a clasificaciones de capacidad del rodamiento más bajas.

	DAT	OS DEL EN	IGRAN <i>A</i>	\JE		CLASIFICACIÓN	CAPA	CIDADES DINÁI	MICAS
		$\alpha = 20$	0°			DEL DIENTE DEL ENGRANAJE	VIDA L ₁₀ DE	1 MILLÓN DE RE	VOLUCIONES
FORMA DEL	D ₂	P _d o (m)	z ₂	x ₂	b ₂	F _z	RADIAL	EMPUJE	MOMENTO
DIENTE	(pulg)				(pulg)	(lb)	(lb)	(lb)	(lb-pie)
FD	15.600	5	78	0	1.460	4,320	24,130	27,780	13,190
FD	23.000	6	138	0	2.500	7,430	85,170	99,260	69,470
FD	26.969	(5)	137	0	1.650	5,725	64,560	73,730	65,660
FD	33.071	(8)	105	0	1.752	9,130	58,790	66,360	77,600
FD	36.000	6	216	0	4.000	12,700	204,020	236,880	274,290
FD	43.701	(10)	111	+.713	2.580	15,490	128,480	145,650	223,060
SD	50.400	2.5	126	0	3.500	24,380	195,710	222,290	396,330
FD	61.811	(10)	157	+.750	3.346	20,640	350,400	399,710	861,070
FD	68.346	(14)	124	+1.150	4.330	36,690	293,690	332,590	801,340
SD	85.333	3	256	0	2.800	18,280	190,740	213,890	686,710
FD	100.000	3	300	0	6.000	32,030	376,230	422,960	1,557,670
FD	158.110	(16)	251	+.500	5.748	67,650	724,030	812,320	4,874,640
FD	206.929	(18)	292	+1.150	6.102	81,360	1,005,010	1,126,290	8,903,140

La Serie TR consiste en rodamientos de tres hileras de rodillos que proporcionan la mayor capacidad para un diámetro dado. Cuando un rodamiento de las Series XR o DT no satisface los requerimientos de rigidez y capacidad, considere la Serie TR.

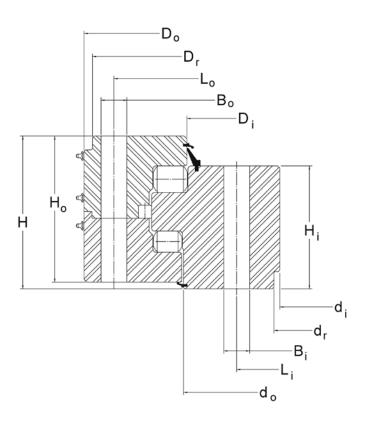
Características de diseño

El rodamiento tiene tres hileras independientes de rodillos orientados normalmente en la dirección de las cargas que se van a transmitir a través del rodamiento. Su orientación se selecciona para optimizar la capacidad, proporcionar baja resistencia de fricción y reducir al mínimo la flexión.

Las hileras superior e inferior de rodillos transmiten cualquier carga opuesta de empuje y se combinan para transmitir cualquier carga de momento, mientras que la hilera intermedia transmite cualquier carga radial. Los rodillos, la configuración del separador utilizada para cada uno y las pistas de acoplamiento están dimensionados para satisfacer los requerimientos de carga y otros de la aplicación.

Para obtener estos beneficios de desempeño, las estructuras de apoyo deben satisfacer los requerimientos de rigidez más elevada y menor planitud que los de los rodamientos de tamaño similar de la Series XT o DT.

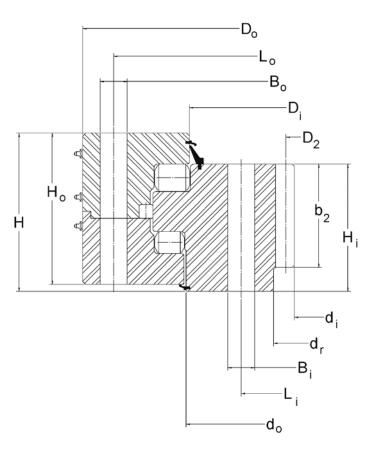
Los dientes del engranaje u otros mecanismos de transmisión se pueden proporcionar en el anillo de apoyo interno o externo y para la retención del rodamiento se puede agregar la elección del patrón de orificio.


Disponibilidad

Los rodamientos de la Serie TR se fabrican a la medida del cliente para ajustarse al diseño y especificación.

Aplicaciones

Los rodamientos de la Serie TR se han utilizado con éxito en aplicaciones de trabajo pesado que requieren rigidez y capacidad adicionales, incluidas:

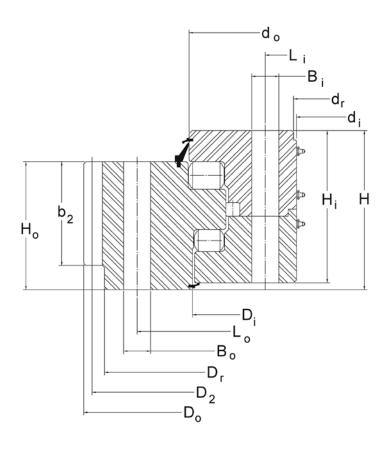

- Radares
- Grúas
- Palas de minería
- Apiladoras y recuperadoras
- Equipo pesado de fresado
- Máquinas de perforación de túneles

Sin engranaje

				DESCRIP	CIÓN DE DI	MENSIONE	S Y PESO			
N/P Kaydon	D _o	d _i	Н	H _o	H _i	D _r	D _i	d _o	d _r	G APROX.
	(pulg)	(pulg)	(pulg)	(pulg)	(pulg)	(pulg)	(pulg)	(pulg)	(pulg)	(lb)
16349001	48.560	33.000	7.300	6.880	6.380	48.500	39.310	39.710	33.120	1,700
16350001	56.890	41.535	8.661	8.150	6.772	_	47.215	47.563	_	2,450
16351001	77.250	59.880	7.550	7.000	7.120	77.125	69.410	70.420	60.000	3,400
16352001	93.000	72.500	9.050	8.630	8.620	_	80.960	81.410	_	5,630
16353001	118.583	97.638	7.677	7.283	6.102	_	107.087	107.402	_	6,280
16354001	122.480	107.638	5.945	5.472	4.646	_	113.780	113.976	_	3,500
16356001	158.000	136.500	9.000	8.500	7.250	_	146.280	146.080	_	10,100
16387001	207.480	187.795	8.819	8.425	8.425	_	198.622	199.055	_	13,200
16366001	236.220	210.236	12.205	9.842	11.811	_	225.433	224.409	_	25,800

	DA [*]	TOS DE	L ORIFIC	10			DATO:	S DEL EN	IGRAN	AJE		CLASIFICACIÓN	CLASIFICACIÓN
ANILLO	O EXTI	ERNO	ANILL	O INTE	ERNO			$\alpha = 20$)°			DEL DIENTE DEL ENGRANAJE	DEL MOMENTO DEL RODAMIENTO
L _o	n _o	B _o	L _i	n _i	B _i	FORMA DEL	D ₂	P _d o (m)	z ₂	x ₂	b ₂	F _z	C _{rm}
(pulg)		(pulg)	(pulg)		(pulg)	DIENTE	(pulg)				(pulg)	(lb)	(lb-pie)
46.000	32	1.313	36.000	32	1 1/4-7	_	_	_	_	_	_	_	1,104,700
54.843	48	1.024	43.583	48	1.024	_	_	_	_	_	_	_	1,275,900
74.500	44	1.250	62.500	44	1.250	_	_	_	_	_	_	_	2,332,400
89.500	60	1.625	76.000	60	1.625	_	_	_	_	_	_	_	6,404,300
115.039	72	1.535	101.181	72	1.535	_	_	_	_	_	_	_	7,936,000
119.882	66	1.299	110.236	66	1.299	_	_	_	_	_	_	_	6,653,000
154.000	100	1.563	140.500	100	1.563	_	_	_	_	_	_	_	20,124,000
202.756	120	1.535	190.945	120	1.535	_	_	_	_	_	_	_	32,339,000
231.102	120	1.772	215.354	120	1.772	_	_	_	_	_	_	_	49,976,000

Engranaje interno

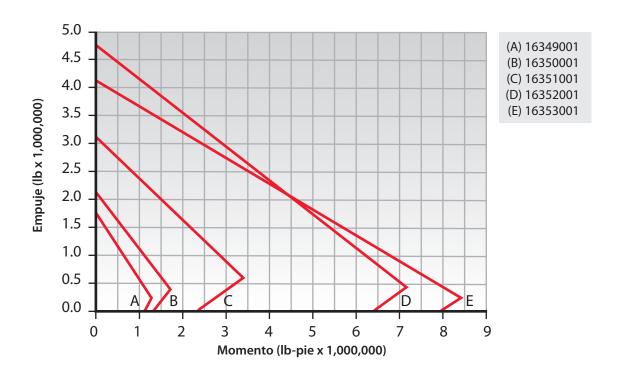

				DESCRIP	CIÓN DE DI	MENSIONE	S Y PESO			
N/P Kaydon	D _o	d _i	н	H _o	H _i	D _r	D _i	d _o	d _r	G APROX.
	(pulg)	(pulg)	(pulg)	(pulg)	(pulg)	(pulg)	(pulg)	(pulg)	(pulg)	(lb)
16376001	54.530	41.760	4.720	4.410	3.700	_	48.150	48.390	43.380	950
16377001	64.173	46.850	7.874	7.283	6.299	_	54.803	54.567	_	2,650
16378001	70.500	50.200	8.620	8.120	6.750	_	59.800	60.220	52.250	3,550
16379001	87.244	68.032	6.969	6.772	5.315	_	77.764	78.112	71.102	3,460
16380001	108.189	85.433	8.504	8.150	6.850	_	97.126	96.339	88.150	6,000
16381001	120.866	97.008	13.701	10.157	11.732	_	108.740	109.291	97.008	10,820
16382001	125.620	106.333	8.380	6.810	6.880	_	115.280	115.630	_	5,800
16383001	155.512	131.339	9.055	8.661	7.284	_	143.307	143.701	133.701	10,550
16384001	187.402	162.992	9.252	8.858	7.480	_	175.158	175.591	_	14,200
16385001	228.000	198.000	11.750	11.250	9.250	_	213.630	214.130	203.000	24,950

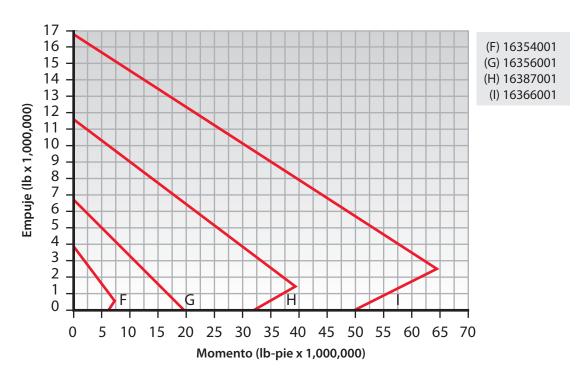
^{*}No existen diámetros externos para este tipo.

Serie TR

DATOS DEL ORIFICIO				DATOS DEL ENGRANAJE				IAJE		CLASIFICACIÓN	CLASIFICACIÓN		
ANILLO EXTERNO ANILLO INTERNO		ERNO	α = 20°						DEL DIENTE DEL ENGRANAJE	DEL MOMENTO DEL RODAMIENTO			
L _o	n _o	B _o	L _i	n _i	B _i	FORMA DEL	D ₂	P _d o (m)	z ₂	x ₂	b ₂	F _z	C _{rm}
(pulg)		(pulg)	(pulg)		(pulg)	DIENTE	(pulg)				(pulg)	(lb)	(lb-pie)
52.953	36	1.024	45.079	36	1.024	SD	42.400	2.5	106	0	3.390	28,250	896,700
61.811	48	1.024	50.551	48	1.024	FD	46.850	(10)	119	-0.75	6.299	55,480	1,479,900
67.625	48	1 1/2-6	55.000	48	1.563	SD	51.000	2	102	0	5.000	56,440	3,514,400
84.646	60	1.299	73.819	60	1.299	FD	68.661	(16)	109	-0.5	4.252	60,240	4,250,900
104.646	80	1.772	91.890	80	1.772	FD	85.984	(14)	156	-0.5	4.724	57,210	9,038,400
117.717	72	1.535	104.724	72	1.535	FD	97.874	(22)	113	-0.5	8.000	143,850	10,642,000
122.812	72	1.563	112.250	72	1 1/2-6	FD	107.333	1.5	161	-0.25	6.880	93,140	9,275,100
151.969	96	1.535	137.402	96	1.535	FD	132.284	(12)	280	0	5.906	59,840	18,616,000
183.858	90	1.535	169.882	90	1.535	FD	164.567	(20)	209	0	7.480	128,000	28,772,000
224.000	150	1.563	207.000	150	1.563	FD	200.000	1	200	0	6.000	130,700	43,823,000

Serie TR

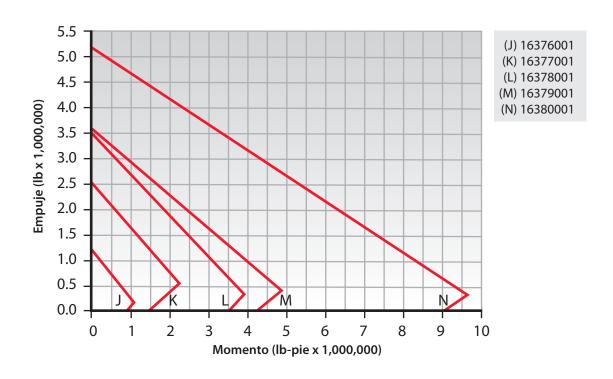

Engranaje externo

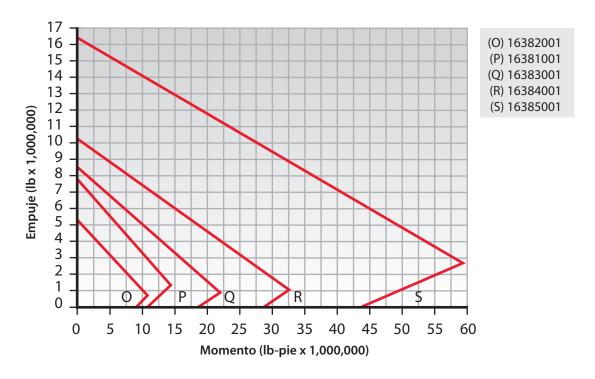

	DESCRIPCIÓN DE DIMENSIONES Y PESO									
N/P Kaydon	D _o	d _i	н	H _o	H _i	D _r	D _i	d _o	d _r	G APROX.
	(pulg)	(pulg)	(pulg)	(pulg)	(pulg)	(pulg)	(pulg)	(pulg)	(pulg)	(lb)
16367001	57.100	42.500	5.000	4.500	4.500	53.750	48.850	49.090	42.630	1,250
16368001	71.338	57.000	5.850	4.790	4.630	69.040	63.760	64.030	57.080	1,600
16369001	97.795	76.850	7.126	5.472	6.772	_	86.614	87.047	_	4,400
16370001	115.800	90.500	10.750	8.500	10.250	_	104.240	104.040	_	10,000
16371001	152.756	129.921	10.039	8.071	9.646	_	141.535	141.339	_	11,130
16372001	170.079	144.882	9.941	7.638	9.449	_	156.729	157.155	_	13,830
16373001	210.968	187.795	8.819	8.425	8.425	207.480	198.622	199.055	_	14,330
16388001	233.000	203.000	11.750	9.250	11.250	228.000	216.880	217.380	_	25,500

Serie TR

DATOS DEL ORIFICIO				DATOS DEL ENGRANAJE				AJE		CLASIFICACIÓN	CLASIFICACIÓN		
ANILLO	ANILLO EXTERNO A			ANILLO INTERNO		⊘= 20°						DEL DIENTE DEL ENGRANAJE	DEL MOMENTO DEL RODAMIENTO
L _o	n _o	B _o	L _i	n _i	B _i	FORMA	D ₂	P _d o (m)	z ₂	x ₂	b ₂	F _z	C _{rm}
(pulg)		(pulg)	(pulg)		(pulg)	DEL DIENTE					(pulg)	(lb)	(lb-pie)
52.000	40	1.094	44.375	40	1.094	FD	56.000	1.5	84	18	4.000	46,750	829,300
66.889	60	1.024	59.252	60	1.024	FD	69.921	(12)	148	+.50	3.430	27,510	1,329,900
91.535	40	1.535	79.921	40	1.535	FD	96.378	(18)	136	0	5.472	70,630	4,129,500
109.750	96	1 1/2-6	94.500	96	1 1/2-6	SD	115.000	2	230	0	8.500	89,510	12,091,000
145.669	90	1.299	133.465	90	1.299	FD	150.394	(20)	191	+.50	8.071	117,500	11,652,000
162.992	120	1.535	148.425	120	1.535	FD	168.504	(20)	214	0	7.638	111,600	24,086,000
202.756	120	1.535	190.945	120	1.535	FD	208.346	(18)	294	+.85	5.906	78,770	32,339,000
224.000	150	1.563	207.000	150	1.563	FD	230.000	1	230	+.50	7.000	130,300	43,823,000

Gráfica de carga de la serie TR – Sin engranaje

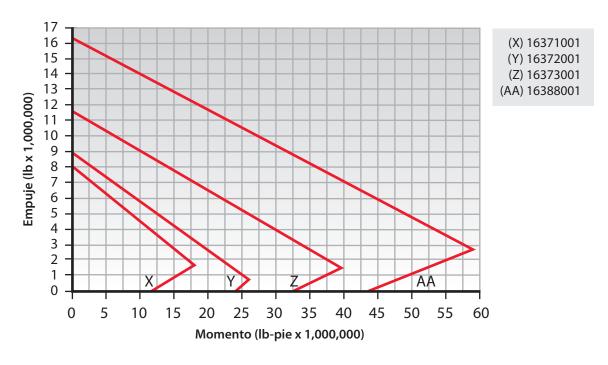




Las gráficas de clasificación solo se aplican para las condiciones de operación definidas como OPERACIÓN NORMAL en la Sección 2 y cuando se instalan y se les da mantenimiento como se define en la Sección 3 de este catálogo. El aumento del diámetro del rodamiento no necesariamente garantiza el aumento de la clasificación del rodamiento, debido a las variaciones en los elementos de rodadura, la sección del anillo y los complementos de sujeción. Para obtener información sobre las bases para el desarrollo de las Gráficas de clasificación, consulte el párrafo CLASIFICACIÓN DE CARGA en la Sección 2.

Gráfica de carga de la serie TR – Engranaje interno

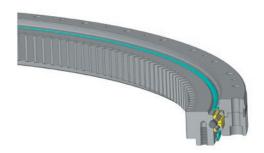




Las gráficas de clasificación solo se aplican para las condiciones de operación definidas como OPERACIÓN NORMAL en la Sección 2 y cuando se instalan y se les da mantenimiento como se define en la Sección 3 de este catálogo. El aumento del diámetro del rodamiento no necesariamente garantiza el aumento de la clasificación del rodamiento, debido a las variaciones en los elementos de rodadura, la sección del anillo y los complementos de sujeción. Para obtener información sobre las bases para el desarrollo de las Gráficas de clasificación, consulte el párrafo CLASIFICACIÓN DE CARGA en la Sección 2.

Gráfica de carga de la serie TR – Engranaje externo

Las gráficas de clasificación solo se aplican para las condiciones de operación definidas como OPERACIÓN NORMAL en la Sección 2 y cuando se instalan y se les da mantenimiento como se define en la Sección 3 de este catálogo. El aumento del diámetro del rodamiento no necesariamente garantiza el aumento de la clasificación del rodamiento, debido a las variaciones en los elementos de rodadura, la sección del anillo y los complementos de sujeción. Para obtener información sobre las bases para el desarrollo de las Gráficas de clasificación, consulte el párrafo CLASIFICACIÓN DE CARGA en la Sección 2.



Sección 5 Contenido Productos y servicios de especialidad

	Número
	de página
Rodamientos de pista de alambre WireX	115
Rodamientos personalizados	116-117
Programa de reconstrucción	118-121
Galvanizado Endurakote	122-123

Rodamientos de pista de alambre personalizados WireX

Los rodamientos WireX Kaydon se diseñaron originalmente para aplicaciones de torretas militares, donde el espacio y peso son invaluables y la resistencia a la corrosión es esencial. Consisten en pistas de alambre insertadas en anillos de apoyo ligeros, permitiendo una alta capacidad de carga y diámetro grande en un rodamiento que puede ser 60% más ligero que uno fabricado completamente de acero.

Características de diseño

Los anillos de apoyo del rodamiento normalmente son de aluminio, con ranuras contorneadas para apoyar, posicionar y alinear las pistas de alambre de acero. Los elementos rodantes normalmente son de acero inoxidable, con hasta tres hileras de rodillos para adaptarse a las necesidades individuales. Esta configuración interna permite a los rodamientos WireX ser más tolerantes con las estructuras de montaje que no son rígidas ni planas. Se puede dar cabida a las irregularidades mediante el movimiento relativo de los insertos de alambre en sus ranuras de apoyo.

Los dientes del engranaje o de otros mecanismos de transmisión se pueden proporcionar en el anillo de apoyo interno o externo y para la retención del rodamiento se puede agregar una variedad de patrones de orificio.

Con frecuencia, los rodamientos WireX se pueden reconstruir, un ahorro sustancial si se compara con el reemplazo completo del rodamiento.

Disponibilidad

Los rodamientos WireX se fabrican de manera personalizada para ajustarse a su diseño y especificación.

Aplicaciones

Los rodamientos WireX se han utilizado con éxito en aplicaciones que requieren un rodamiento ligero y resistente a la corrosión, las cuales incluyen:

- Torretas
- Radares
- Sonares

Capacidades de los rodamientos personalizados

Además de los rodamientos más estandarizados que se muestran en las páginas anteriores, Kaydon cuenta con una amplia experiencia en el diseño y manufactura de rodamientos y conjuntos personalizados o especiales. Esta experiencia nos permite que el producto cumpla con las necesidades.

Los rodamientos de bolas y de rodillos que se muestran a continuación son solo una muestra de nuestras capacidades de personalización, que se proporcionan para inspirar aún más su creatividad para encontrar la solución óptima.

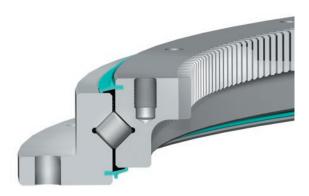


Figura 5-1

Rodamiento de rodillo transversal de sección delgada que combina las características de mayor rigidez, mayor capacidad dinámica y menor torque de rotación con ahorro de peso y espacio. Los rodillos se pueden orientar según se necesite para una capacidad máxima de transporte de carga y resistencia a la fatiga. Los diseños con configuraciones y características similares varían desde 15 pulgadas a más de 90 pulgadas.

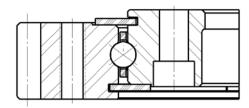


Figura 5-2

Rodamiento de diámetro grande de sección delgada con engranaje externo fabricado de anillos especiales de acero inoxidable, elementos rodantes de plástico y separador para baja permeabilidad y para limitar la desgasificación. El uso de elementos rodantes de plástico también permite la operación sin lubricación. Se han producido diseños y componentes similares para tamaños de hasta 70 pulgadas.

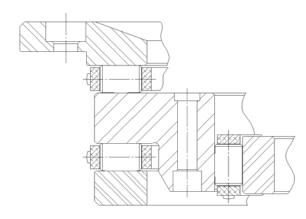


Figura 5-3

Rodamiento complejo de tres hileras de rodillos con material mínimo de pista que proporciona al cliente oportunidades de peso ligero y ahorro de espacio. Las secciones delgadas y las configuraciones poco usuales permiten el diseño compacto en general. Tres hileras separadas de rodillos permiten el uso en aplicaciones con cargas simultáneas, así como con cargas invertidas radiales, axiales y de momento. El complemento de rodillos y las pistas se pueden orientar y diseñar para optimizar la capacidad y resistencia a la fatiga así como la rigidez. Los diseños con características similares han superado las 90".

Figura 5-4

Se muestra un rodamiento de dos complementos rodantes y tres anillos con dos engranajes integrados, uno en el anillo interno y otro en el anillo externo. Cuando se combina esta configuración con componentes de precisión permite una rotación precisa, suave, independiente y sincronizada de los anillos y de cualquier componente conectado. El uso de un separador aumenta la capacidad de velocidad de

Capacidades de rodamientos personalizados (continuación)

operación del rodamiento y combinado con sellos de baja fricción, permite una resistencia de rotación mínima. El paquete total reduce de manera significativa el número de componentes necesarios para realizar las mismas funciones que las que realiza este diseño actualmente.

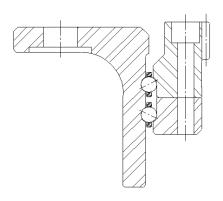


Figura 5-5

Este rodamiento de diámetro grande de sección delgada montado en brida es de peso ligero, requiere espacio mínimo y se adapta a los componentes existentes. Las bridas están curvadas entre los orificios para proporcionar mayor reducción de peso. El uso de un complemento rodante de contacto angular de hilera doble con separadores proporciona resistencia de rotación mínima y se puede utilizar para condiciones de alta aceleración así como a velocidades muy altas de operación continua. El engranaje de alta precisión en el anillo interno proporciona posicionamiento preciso.

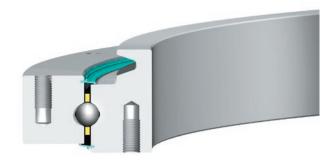



Figura 5-6

Rodamiento de bolas de cuatro puntos con una ranura de banda en V integrada en un anillo permite una opción simple de transmisión mecánica a bajo costo sin lubricación y mantenimiento mínimo. Los diseños de transmisión de banda, planos o con dientes, son soluciones alternativas potenciales dependiendo de las condiciones de la aplicación. El uso de un separador aumenta la capacidad de velocidad de operación del rodamiento y combinado con sellos de baja fricción, permite una resistencia de rotación mínima.

Un programa dedicado de reacondicionamiento

La experiencia de Kaydon infinite® en el diseño y manufactura de rodamientos ha establecido a Kaydon como el reconstructor líder en el mundo de coronas de orientación y rodamientos de sección delgada.

Nuestro enfoque en reconstrucción de rodamientos refleja nuestro esfuerzo de manufactura, con un experimentado personal de reconstrucción, con el apoyo de ingenieros expertos y equipo de vanguardia dedicado. Nuestro programa de reconstrucción de rodamientos está diseñado para devolver un rodamiento a servicio en el menor tiempo posible, garantizando al mismo tiempo la mano de obra de más alta calidad a un costo muy rentable.

Un rodamiento reparado por Kaydon se desempeñará como un rodamiento nuevo a un costo significativamente menor, teniendo sin embargo, la misma garantía. Un ejemplo es una corona grande de orientación reconstruida a petición de un operador principal de minas en E.E.U.U., que con facilidad pasa la inspección de 35,000 horas (30,000 horas es lo normal) y todavía continua sólida.

Podemos reconstruir rodamientos tan pequeños como de 10" (25 cm) y tan grandes como de 240" (6.1 m). Las soluciones de reconstrucción de Kaydon infinite® se extienden a todos los rodamientos de bolas y rodamientos de rodillos, sin importar el fabricante original. Esto incluye:

- Rodamientos de bolas de empuje y rodamientos de rodillos de empuje
- Rodamientos de bolas radiales y rodamientos de rodillos radiales
- Rodamientos de rodillos transversales
- Rodamientos de contacto angular de dos hileras
- Rodamientos de tres hileras de rodillos

- Rodamientos de bolas
- Rodamientos de varias hileras/dos hileras de bolas
- Rodamientos de rodillos cilíndricos
- Rodamientos de bolas y rodamientos de rodillos de sección delgada

El programa de reconstrucción de Kaydon no solo es dedicado, sino también es extenso. Incluye:

- Inspección sin costo en coronas de orientación de hasta
 8' de diámetro
- Inspección en aproximadamente una semana
- Pruebas no destructivas realizadas en todos los rodamientos
- Análisis de ingeniería
- Reportes de análisis proporcionados para todas las inspecciones
- Tiempo de entrega de cuatro semanas para rodamientos de 8' y menores y solo algunas semanas más para rodamientos de 8' a 20' de diámetro
- Ahorros sustanciales en comparación con el costo de un rodamiento de reemplazo nuevo
- Riguroso programa de calidad ISO 9001:2008
- Servicios de reacondicionamiento de emergencia
- Un año de garantía para todos los rodamientos reacondicionados

Kaydon también fabrica coronas de orientación de reemplazo nuevas que cumplen con las especificaciones del fabricante de equipo original con ahorros sustanciales en comparación con los precios del rodamiento del fabricante de equipo original. Nuestro probado proceso se caracteriza por la ingeniería inversa y el análisis completo del diseño para aumentar al máximo la vida dinámica y la capacidad estática. Y nuestras instalaciones ubicadas estratégicamente cuentan con la flexibilidad para cubrir pedidos de gran volumen y de bajo volumen.

Programa de reacondicionamiento

El programa de reparación de rodamiento de Kaydon está diseñado para ofrecer las mejores opciones disponibles de servicio, sin importar la marca o el tamaño del rodamiento. Los rodamientos se evalúan para la reconstrucción desde 10 pulgadas hasta 240 pulgadas de diámetro exterior (OD).

En este programa se ofrecen soluciones optimizadas a través de nuestro experto equipo de ventas, presencia internacional y capacidad de proceso. El proceso comienza con el equipo de ingeniería de servicio haciendo equipo con los grupos de mantenimiento o servicio al cliente para analizar el rodamiento.

Señales de advertencia de falla del rodamiento

Tal vez la tarea más difícil es determinar si un rodamiento necesita servicio y cuándo lo requiere. Esta determinación requiere mucho más que una inspección visual rápida. A continuación se presentan algunas señales que se deben buscar al inspeccionar los rodamientos que pueden necesitar reparación:

- El rodamiento está llegando a su expectativa de vida sugerida
- El rodamiento ha excedido una temperatura de operación de 200 °F (93 °C)
- El rodamiento se ha expuesto a vibraciones en exceso
- El rodamiento experimentó una caída o aumento repentino de lubricación
- El rodamiento tiene un sello faltante o roto
- El rodamiento presenta resistencia excesiva a la rotación
- La estructura tiene movimiento o balanceo excesivos durante la operación
- La estructura de acoplamiento y los accesorios del montaje están dañados, por ejemplo, agrietados, rotos, deformados o incluso faltantes
- El rodamiento presenta giro limitado, vibraciones anormales o ruido
- Daño visible en el engranaje o el rodamiento

Prestar atención a estos detalles durante las revisiones del mantenimiento normal le pueden ayudar a determinar si un rodamiento necesita mantenimiento antes de que produzca tiempo de inactividad y gastos innecesarios. La observación cuidadosa es el primer paso en la creación de un programa que vigile sus rodamientos y las operaciones que los rodean.

ADVERTENCIA: Las prácticas adecuadas de mantenimiento y manejo son fundamentales. No seguir las instrucciones de instalación, mantenimiento y operación pueden producir fallas en el equipo, creando un riesgo de lesiones o la muerte.

Para proporcionar la solución correcta de reparación al rodamiento dañado, se debe comprender la causa y la magnitud del daño. Las cuestiones ambientales, como la entrada de contaminación y agua en el rodamiento son las causas más comunes de la falla prematura del rodamiento. Las siguientes son causas típicas de daños que se encuentran en los rodamientos y las precauciones que se deben tomar para prolongar la vida útil.

■ Manejo inadecuado:

La deformación y las melladuras o las muescas en la jaula pueden ocasionar la instalación, el manejo o el desmontaje inadecuados.

Precauciones: Utilice las prácticas adecuadas de manipuleo junto con las herramientas correctas para el montaje y desmontaje.

Lubricación inadecuada:

La excoriación de los componentes o la deformación severa del rodamiento pueden ser el resultado de una lubricación inadecuada o incorrecta.

Precauciones: Inspeccione y reemplace el lubricante en el intervalo recomendado por el fabricante o según sea necesario, lo que ocurra primero. Si es necesario, cambie o mejore el lubricante.

Corrosión y ataque químico:

La exposición a la humedad puede conducir a ataque químico, picaduras, y luego a la oxidación de los componentes del rodamiento. El descamado puede ser el resultado de rodamientos que funcionan después de tales daños.

Precauciones: Revise con regularidad los sellos, asegure el sellado adecuado y almacene adecuadamente los rodamientos.

■ Corriente eléctrica:

El paso de corriente eléctrica mientras un rodamiento está girando puede producir canales o ranuras. La conexión a tierra eléctrica inadecuada mientras un

Programa de reacondicionamiento

rodamiento está fijo puede crear quemaduras pequeñas.

Precauciones: Desvíe la corriente alrededor del rodamiento con la conexión a tierra adecuada antes de soldar.

Material extraño:

Las abrasiones, los golpes y las ranuras pueden producirse por contaminación de partículas abrasivas y desechos.

Precauciones: Retire los desechos, cambie el lubricante y revise/reemplace los sellos.

Desalineación:

La concentración de esfuerzos geométricos y el descamado puede producirse por desalineación, flexiones o cargas pesadas.

Precauciones: Maquine los asientos y hombros del rodamiento con precisión. Revise la precisión del eje y los asientos de la carcasa, asegure la alineación adecuada del eje/la carcasa y confirme o reduzca las fuerzas de operación.

Sobrecarga:

El uso inadecuado para la aplicación prevista puede conducir a condiciones de sobrecarga que aceleren el desgaste. Precauciones:

Utilice el equipo para la aplicación prevista dentro de los límites de carga definidos.

Opciones de servicio de Kaydon

El análisis inicial abarca la limpieza, la verificación de las holguras internas, el desmontaje e inspección del conjunto del rodamiento. Después, el equipo de ingeniería evalúa el daño y proporciona un presupuesto con base en el tipo de reconstrucción más adecuado para restaurar el rodamiento a la operación total. Las tres clasificaciones de reparaciones son:

Reparación Clase A

Para asegurar la geometría y la alineación correctas, los conjuntos de rodamiento requieren del maquinado de las pistas del elemento rodante y de las superficies que interactúan con la estructura de montaje para la

instalación adecuada. Se utilizan elementos rodantes sobremedida para restaurar la holgura interna o la precarga deseadas y se instalan espaciadores y sellos nuevos.

Reparación Clase B

Los conjuntos de rodamiento requieren pulido u otras alteraciones de la superficie para aliviar las áreas tensadas o corroídas en las superficies de la pista o de montaje. El rodamiento se vuelve a ensamblar con elementos rodantes, espaciadores y sellos nuevos según sea necesario.

Reparación Clase C

Los conjuntos de rodamiento requieren un anillo de rodamiento completamente nuevo para hermanar con un anillo reparable existente. La pista existente se maquina para proporcionar la geometría correcta y el anillo y la pista nuevos se fabrican para hermanar con el componente reparado. Elementos rodantes, espaciadores y sellos nuevos completan la restauración.

Para dar el siguiente paso

- 1. Póngase en contacto con el servicio de reconstrucción Kaydon para una solución personalizada:
 - Ilame al 800-286-6274 ext. 226
 - o visite www.kaydonbearings.com/remanufacturing.htm
- 2. El representante de Kaydon trabajará para evaluar las necesidades de reparación del rodamiento.
- 3. Kaydon evaluará físicamente la condición del rodamiento y proporcionará una cotización.
- 4. Cuando se autorice la reparación, la planta llevará a cabo todas las reparaciones necesarias y devolverá el rodamiento dentro del plazo de entrega prometido. Si se decide no proceder con la reparación, el rodamiento dañado será desechado o se regresará desmontado.

Galvanizado Endurakote para rodamientos resistentes a la corrosión

Introducción

El galvanizado Endurakote protege los rodamientos de la corrosión y ofrece mejoras de vida útil en ambientes hostiles. El galvanizado Endurakote se aplica sobre materiales de rodamiento convencionales y ofrece el beneficio de resistencia a la corrosión que normalmente se encuentra en rodamientos de acero inoxidable. El recubrimiento se aplica a cada anillo de la pista de rodamiento por completo, incluidas las pistas, no dejando así ninguna área expuesta. No se pueden aplicar a la pista otros recubrimientos comerciales de cromo o cadmio normalmente aceptados y utilizados debido a los esfuerzos de contacto de rodadura. El galvanizado Endurakote es de cromo duro, electro depositado por un proceso patentado que logra una verdadera unión molecular y sin desconcharse o descarapelarse incluso bajo los esfuerzos de alto contacto experimentados en las pistas de rodamiento.

Los resultados de las pruebas de laboratorio y de campo han demostrado los beneficios de este proceso. La prueba severa de rocío con sal ha demostrado que los rodamientos con el galvanizado Endurakote resisten la corrosión, tan bien como o mejor que el acero inoxidable AISI 440C. La superficie exterior densa y dura formada por el recubrimiento es extremadamente resistente al desgaste y es excelente para la retención de la película lubricante. La prueba de vida útil convencional de los rodamientos con el galvanizado Endurakote ha demostrado que no es necesario reducir la vida útil. De hecho, la superficie extremadamente dura del galvanizado Endurakote protege el rodamiento del daño generado en la superficie que puede promover la falla prematura. Debido a que el recubrimiento es capaz de soportar temperaturas extremadamente altas, los rodamientos están limitados por los materiales o el lubricante del rodamiento utilizados.

El recubrimiento utilizado para el galvanizado Endurakote se puede aplicar a cualquier tipo de rodamiento y a la mayoría de los materiales de rodamientos. Su ventaja principal es utilizar materiales en existencia con sus economías y convertirlos en rodamientos resistentes al desgaste y a la corrosión. Esto es particularmente beneficioso para los rodamientos de diámetros más grandes o donde la entrega rápida es fundamental. Por lo tanto, se pueden lograr ahorros en los costos sobre los materiales más exóticos o especializados. Además, a los rodamientos en existencia se les puede aplicar el galvanizado Endurakote para entrega rápida.

El resultado neto es que podemos ofrecer rodamientos con la capacidad de los aceros de rodamiento convencionales y la resistencia a la corrosión del acero inoxidable AISI 440C a partir de los componentes estándar en existencia.

Aplicación

El galvanizado Endurakote proporciona resistencia a la corrosión y es eficaz en el incremento de la resistencia al desgaste en contactos de superficie deslizante. La composición de la microsuperficie del galvanizado Endurakote ayuda en la dispersión del lubricante, mejorando los metales base al grado de reducir o eliminar el desgaste, el atascamiento y la alta fricción, sobre una amplia gama de instalaciones y ambientes.

Ventajas

El galvanizado Endurakote tiene un efecto de acumulación de menos de 0.0002 bajo circunstancias normales. Por lo tanto, se puede aplicar con frecuencia para reponer componentes de rodamientos que se hayan seleccionado especialmente. El galvanizado Endurakote es compatible con la mayoría de los metales ferrosos y no ferrosos, permitiendo la máxima flexibilidad en la selección del material base. El galvanizado Endurakote normalmente es un proceso final y su calidad es constante con cualquier metal base dado, asegurando la reproducibilidad del diseño.

Propiedades y características

A. Dureza

El galvanizado Endurakote, como se deposita, tiene una dureza equivalente mayor que 70 Rockwell "C". Cuando se mide por métodos convencionales de microdureza, el material receptor modificará esta medición en algún grado.

Galvanizado Endurakote (continuación)

B. Coeficiente de fricción

(Nota: Mediciones realizadas a 72 °F, utilizando otros materiales para comparación.)

Material	Frente a material	Estático — Deslizante
Acero	Acero	0.30 — 0.20
Acero	Latón, bronce	0.25 — 0.20
Acero	Galvanizado Endurakote	0.17 — 0.16
Latón, bronce	Galvanizado Endurakote	0.15 — 0.13
Galvanizado Endurakote	Galvanizado Endurakote	0.14 — 0.12

C. Adherencia

El galvanizado Endurakote no se descama, agrieta, astilla, descarapela ni se separa de alguna otra manera del material base bajo pruebas estándar de flexión o bajo condiciones en donde se induce calor severo. La adherencia es adecuada para soportar el esfuerzo de compresión extremadamente alto en las áreas de contacto de los rodamientos de bolas y de rodillos.

D. Efecto sobre la base

La pureza de la superficie de cromo no será inferior al 99% ya depositado. Un programa extenso de pruebas en Kaydon estableció que los rodamientos con el galvanizado Endurakote presentaron capacidades de transporte de carga y expectativa de vida útil igual o mejor que los rodamientos de acero sin recubrimiento.

E. Resistencia a la corrosión

El galvanizado Endurakote resiste el ataque de la mayoría de los compuestos orgánicos e inorgánicos con un pH dentro de la gama de 4 y 11, a excepción de los ácidos sulfúrico y clorhídrico. La porosidad del metal base, la concentración del compuesto y el tiempo de exposición al compuesto se vuelven los factores de corrosión, pero el galvanizado Endurakote mejora en gran medida el material base. En pruebas severas de rocío con sal, así como en

pruebas de inmersión en agua corriente, el acero del rodamiento con galvanizado Endurakote demostró tener la misma resistencia a la oxidación que un acero inoxidable completamente endurecido AISI 440C. En muchos casos, el galvanizado Endurakote es mejor para la protección contra la corrosión que la placa de cadmio, placa de zinc, fosfatos, cromatos, óxido negro o la placa normal de cromo. Le solicitamos formular cualquier pregunta relacionada y nos complacerá organizar pruebas para calificar el galvanizado Endurakote para entornos específicos.

F. Resistencia al calor

Los rodamientos con galvanizado Endurakote están diseñados para mantener sus características de operación en un rango de temperatura de -65 °F a 250 °F.

G. Calidad de la superficie

El galvanizado Endurakote se ajusta a la textura de la superficie existente. El acabado Ra se mejorará ligeramente por debajo de 8 Ra; por debajo de 4 Ra presenta muy poco cambio. El galvanizado Endurakote tiene una superficie mate o de microcáscara de naranja con muy buenas cualidades de retención de lubricante.

H. Industrias de alimentos

El galvanizado Endurakote se puede utilizar en equipos de procesamiento de alimentos.

I. Capacidad de carga

El galvanizado Endurakote no afecta la capacidad de carga estática o dinámica del rodamiento.

Capacidades del tamaño del rodamiento

El galvanizado Endurakote se puede aplicar a coronas de orientación de hasta 45 pulgadas.

Restricciones

Kaydon no recomienda el uso del galvanizado Endurakote en ninguna aplicación de torque de apriete bajo o sensible al torque de apriete.

Sección 6 Contenido Apéndice e información de ventas

	Número
	de página
Hoja de datos de especificaciones	125-126
Sitio Web de Kaydon	127
Literatura de Kaydon	128
Información de garantía y legal	129-131

		©Rodamientos Kaydon Edición 1	1 Coronas de orientación Catálogo 390
Hoja de datos de esp	ecificaciones Elija una de las	s 4 maneras fáciles de llenar y	devolver
≡ CORREO: Kaydon Bearings, P	O Box 688, Muskegon, MI 49443		KAYDON
EN LÍNEA: www.kaydonbear	ings.com, FAX: 231-759-4102,	CORREO ELECTRÓNICO: bearin	una marca del Grupo SKF gs@kaydon.com
1. Información de contacto	_		
Nombre		Compañía	
Puesto		Dirección	
Correo electrónico		Ciudad	
Teléfono		Estado	
Fax		Código postal	País
2. Datos de cotización			
Cantidad de la cotización	Pzas / lote de entrega	Uso anual	Pzas / año
Entrega requerida	Semanas	Precio meta	Por unidad
Propuesta requerida	Fecha		
3. Descripción de la aplicació	ón (adjunte dibujo o boceto adici	onal)	
Aplicación (Referencia Tabla 2-4 Fa	actores de servicio pág. 17)		
¿Cuál de las siguientes opciones se aplica?	☐ Aplicación nueva	o Incluyo a continuación la/s) vazón	(oc) para la húsquada dal intercambio
Otras consideraciones	☐ Intercambio de rodamiento existent	e. Incluya a continuación la(s) razoni	es) para la busqueda del intercambio.
Posición del eje de rotación			
☐ Vertical	☐ Horizontal	☐ Inclinado/Variable	
1			a y
		Nominal (con relación a la vertion α grados	cal) +B
Q O		Rango	
	, ,	±β grados	
Dirección de la carga axial	I	I	
☐ Compresión	☐ Tensión (Suspendida)		
111111	* * * * * * * *		
111111	******		
Temperatura ambiente	" Mínima °F	Normal °F	Máxima °F
Sellos requeridos	☐ No ☐ Sí, frente a:		
Lubricación específica requerida	☐ No ☐ Sí, tipo:		

¿Consideraciones ambientales especiales? $\ \square$ No $\ \square$ Sí, describa:

Hoja de datos de especificaciones (continuación)

4. Información del rodamiento

	Describir dimensiones						
	Mínimo Preferido Máximo						
DI	pulg	pulg	pulg				
DE	pulg	pulg	pulg				
Ancho	pulg	pulg	pulg				

	Orificios de montaje							
	Pista externa	Pista externa (□ igual que la interna)						
Tamaño								
Cantidad								
Tipo	□ Lado a lado□ Lado a lado roscado□ Ciego roscado	□ Lado a lado□ Lado a lado roscado□ Ciego roscado						
	☐ Con caja c/chaflán en el fondo ☐ Con caja	☐ Con caja c/chaflán en el fondo ☐ Con caja						

Datos del	engranaje
☐ Ninguno ☐ Ir	nterno 🗅 Externo
Forma del diente	☐ Profundidad total ☐ Stub
Paso diám.(Mod)	
Diámetro de paso	pulg
Ángulo de presión	grados
Número de dientes	
Mod. de adendum	pulg
Ancho de la cara	pulg
Piñón(es) de	acoplamiento
Número utilizado	
Número de dientes	
Mod. de addendum	pulg
DE	pulg
Distancia	del centro
🗖 Ajustable 📮 Fija, d	distancia pulg

5. Parámetros de	carga						
	Ca	ırgas del rodamier	nto	Velocida	d (RPM)	Carga del	Porcentaje
Caso de carga	Axial (lb)	Radial (lb)	Momento (lb-pi)	Promedio	Máx.	engranaje Torque (lb-pie)	de tiempo
Estática				_	_	_	
Operación normal 1							
Operación normal 2							
Operación normal 3							
Operación máxima							
Prueba/ sobrecarga							
¿Factor de segur cargas anteriore	idad incluido en las s?	□ No □ Sí,			or de servicio a ción requerido		
Rotación		☐ Intermitent☐ Continuo si☐ Oscilante, _	n interrupción		a sola direcció ecciones alteri		
Vida útil requeri	da (L ₁₀)	•	base en las velocidades c nes/oscilaciones	de la tabla ante	rior)		
¿Impactos o vibr	aciones?	□ No □ Sí, describa:	:				
	eciales: materiales, to cubrimientos protectore						
5. Comentarios							

Visite nuestro sitio Web: www.kaydonbearings.com para los últimos lanzamientos, las características más recientes y descargas de catálogos, documentos técnicos, videos, software y dibujos de diseño asistido por computadora (CAD).

Información de la aplicación para ayudar en sus diseños

También está disponible para descargar desde nuestro sitio Web www.kaydonbearings.com.

Rodamientos para la industria aeroespacial-Aplicaciones de defensa

Resalta la experiencia de Kaydon en una amplia gama de aplicaciones de la industria aeroespacial-defensa, además de las capacidades de diseño del cliente y las certificaciones de la industria (por ejemplo, AS9100C).

Catálogo de rodamientos de sección delgada Reali-Slim[®]

Información completa de ingeniería y selección en toda la línea de productos, incluida la serie métrica Reali-Slim MM®, la serie de plataformas giratorias Reali-Slim TT® y la serie Ultra-Slim®. 136 páginas. Catálogo 300.

2. Soluciones de rodamientos para la industria de minería

Folleto de 4 páginas para los usuarios de equipo de minería que presenta rodamientos reconstruidos y de reemplazo nuevos de Kaydon.

Ambos se desempeñan como rodamientos del fabricante de equipo original a menor costo, con entrega más rápida.

Una guía de montaje ilustrada para los rodamientos Reali-Slim

Proporciona ideas de cómo mejorar los diseños a través de un mejor montaje y uso de los conjuntos de rodamiento. 24 páginas. Descargue soluciones con ingeniería: guía de montaje de rodamientos Reali-Slim del sitio Web.

3. Programa de rodamientos reconstruidos

Explica el programa dedicado de Kaydon para la reconstrucción de rodamientos de bolas y de rodillos desgastados con calidad como nuevos con ahorros sustanciales y 1 año de garantía.

Software de Reali-Design® y Reali-Design MM®

Acelera el proceso de selección de rodamientos Reali-Slim. Incluye hojas de datos, cálculos de vida útil y biblioteca DXF lista para CAD para las series en pulgadas y métricas. El software se puede descargar de www.kaydonbearings.com.

Para los rodamientos de rodillos bi-partidos, visite el sitio Web de nuestra división hermana: www.cooperbearings.com.

Información de garantía y avisos legales

ADVERTENCIA - No prestar atención a las recomendaciones en el texto identificado por el símbolo de advertencia puede ocasionar daños al equipo y peligro para la vida humana.

Exención de responsabilidad

La información del diseño y de la aplicación que contiene este catálogo es solo para ilustración. La responsabilidad para la aplicación de los productos que contiene este catálogo corresponde exclusivamente al diseñador o al usuario del equipo. A pesar de nuestros mejores esfuerzos, el material que contiene este catálogo puede tener imprecisiones y errores de tipografía.

Aviso de peligro

El uso de cualquier pieza, como las descritas en este catálogo, puede ser peligroso y tienen el potencial de ocasionar lesiones graves, incluida la muerte o daños a la propiedad. El comprador es responsable de evaluar los riesgos asociados con cualquier pieza que se utilice en su aplicación.

Términos y condiciones estándar de venta de Kaydon

- 1) Alcance. Los precios cotizados son para su aceptación dentro de treinta (30) días a partir de la fecha de la cotización a menos que se establezca otra cosa. Los términos y condiciones de venta que se exponen a continuación se aplican a todas las cotizaciones realizadas y los pedidos de compra aceptados por el vendedor.
- Aceptación de pedidos. Todos los pedidos están sujetos a la aceptación de los funcionarios autorizados en la división del vendedor o las oficinas filiales.
- 3) **Programación.** Las fechas de envío son aproximadas y se basan en la recepción rápida de toda la información necesaria. El comprador proporcionará al vendedor las instrucciones de envío por escrito con tiempo suficiente para permitir al vendedor realizar el envío a opción del vendedor dentro de cualquier momento o momentos especificado(s) en este documento para el envío. En caso de retraso en la entrega debido a cualquier razón descrita en la Sección 15, líneas abajo, la fecha de entrega se pospondrá durante un periodo igual al tiempo perdido por causa de la demora. En caso de que dicho retraso continúe durante más de dos semanas, entonces, a opción del vendedor, el pedido se considerará cancelado sin responsabilidad para el vendedor.
- Entrega y transporte. Las fechas de entrega del vendedor son aproximadas y el vendedor realizará los esfuerzos comerciales razonables para la entrega de acuerdo con los programas de entrega y desempeño. El vendedor no será responsable por los retrasos en la entrega u otros incumplimientos en el desempeño de este pedido que surjan por causas más allá del control del vendedor. A menos que el vendedor acepte lo contrario por escrito, la entrega de los productos en lo sucesivo se realizarán en el sitio de manufactura del vendedor EXW (Ex-Works INCOTERMSR 2010). El título de propiedad de los productos pasa al comprador y los productos están a riesgo del comprador desde y después de la entrega en el sitio de manufacturan del vendedor EXW. Los gastos de transporte los pagará el comprador y el riesgo de pérdida, escasez, retraso o daño a los productos en tránsito recaerán sobre el comprador, cuya responsabilidad será presentar las reclamaciones al transportista.
- Términos de pago. Las facturas se vencen y se pagarán en (30) treinta días a partir de la fecha de la factura a menos que se muestren otros términos en el anverso del presente documento. Se aplicará un cargo contable de 1 1/2% a todas las cantidades vencidas. Si el comprador retrasa los envíos, los pagos se vencerán en la fecha en la que el vendedor esté preparado para realizar el envío. Si el trabajo cubierto por la orden de compra la retrasa el comprador, se realizarán los pagos con base en el precio de compra y el porcentaje de avance. El vendedor se reserva el derecho de enviar su pedido y realizar el cobro mediante letra a la vista con el conocimiento de embarque adjunto.
- **Impuestos.** Los precios no incluyen los impuestos por ventas extranjeras o nacionales, uso, impuestos sobre el consumo o similares.

- Por consiguiente, además de los precios especificados en el presente documento, la cantidad de cualquier impuesto general o específico actual o futuro sobre ventas, uso, ejercicio u otro, o los impuestos de exportación o importación, tarifas o multas u otros cargos fijos o impuestos gubernamentales por cualquier autoridad(es) legal(es) sobre o aplicables a la producción, venta, envío, entrega o uso de los productos vendidos en adelante se agregará al precio y lo pagará el comprador o en su defecto, el comprador deberá proporcionar al vendedor un certificado de exención de impuestos aceptable para las autoridades fiscales. Si dicho impuesto lo paga el vendedor, el comprador lo reembolsará al vendedor a la presentación de la factura.
- Garantía. El vendedor garantiza que los productos manufacturados están libres de defectos en el título de propiedad, material y mano de obra. El alcance de la obligación del vendedor en lo sucesivo es reparar o reemplazar sus productos que no cumplan con las especificaciones, en la planta del vendedor EXW, si se devuelven dentro de doce (12) meses después de la fecha de entrega. No se otorgará un subsidio por reparaciones o alteraciones realizadas por el comprador sin la aprobación por escrito del vendedor. La garantía no se interpretará que es para cubrir el costo de cualquier trabajo realizado por el comprador en el material proporcionado por el vendedor o el costo de desmontaje o instalación del producto. Los productos y piezas que no fabrica el vendedor solo están garantizadas en la medida y en la forma que los mismos están garantizadas para el vendedor por los proveedores de este y solo en la medida en la que el vendedor pueda hacer cumplir dicha garantía. LO ANTERIOR ESTABLECE LAS GARANTÍAS ÚNICAS Y EXCLUSIVAS QUE PROPORCIONA EL VENDEDOR AL COMPRADOR Y NO EXISTEN OTRAS GARANTÍAS EXPRESADAS O IMPLÍCITAS DE HECHO O POR LEY. LAS GARANTÍAS ESTABLECIDAS EN EL PRESENTE DOCUMENTO SON EN LUGAR DE CUALQUIER OTRA GARANTÍA, ESCRITA O VERBAL, LEGAL, EXPRESADA O IMPLÍCITA, INCLUIDAS LAS GARANTÍAS DE COMERCIALIZACIÓN Y APTITUD PARA UN PROPÓSITO EN PARTICULAR, QUE POR EL PRESENTE SE DESCONOCE. LA GARANTÍA DEL VENDEDOR NO SE APLICA A NINGÚN BIEN QUE SE HAYA SOMETIDO A USO INDEBIDO, MALTRATO, MALA APLICACIÓN, NEGLIGENCIA (INCLUIDA PERO NO LIMITADA AL USO DE PIEZAS O ACCESORIOS NO AUTORIZADOS) O EL AJUSTE O REPARACIÓN REALIZADOS POR CUALQUIER OTRO QUE NO SEA EL VENDEDOR O UNO DE LOS AGENTES AUTORIZADOS DEL VENDEDOR.
- Limitación de responsabilidad. El vendedor no será responsable, obligado ni responderá de ninguna lesión o daño resultante de una aplicación o uso de sus productos, en forma individual o en combinación con otros productos. LA RESPONSABILIDAD EXCLUSIVA DEL VENDEDOR POR INCUMPLIMIENTO DE LA GARANTÍA O DE CUALQUIER OTRA RECLAMACIÓN SE LIMITARÁ A LA REPARACIÓN O EL REEMPLAZO DEL PRODUCTO O LA DEVOLUCIÓN DEL PRECIO DE COMPRA, A CRITERIO ÚNICO DEL VENDEDOR. EL VENDEDOR NO SERÁ RESPONSABLE POR NINGÚN DAÑO, INCLUIDOS PERO NO LIMITADOS A DAÑOS CONSECUENCIALES, INCIDENTALES, PUNITIVOS, LIQUIDADOS O ESPECIALES QUE SURJAN DE O EN CONEXIÓN CON EL USO O EL DESEMPEÑO DE LOS PRODUCTOS O COMO RESULTADO DE LA ACEPTACIÓN DE ESTE PEDIDO. EL COMPRADOR ASEGURARÁ AL VENDEDOR CONTRA TODA RESPONSABILIDAD, COSTO O GASTO QUE PUEDA SUFRIR EL VENDEDOR DEBIDO A CUALQUIER PÉRDIDA, DAÑO O
- **Aceptación de productos.** Los productos se considerarán aceptados sin ninguna reclamación por el comprador a menos de que el vendedor reciba una notificación por escrito de no aceptación dentro de treinta (30) días de entrega en el lugar de manufactura del vendedor EXW o diez (10) días de entrega si las partes convienen los términos de envío que no sean los de EXW. Dicha notificación por escrito no la considerará recibida el vendedor a menos que vaya acompañada de todas las facturas de flete para tal envío, con anotaciones del agente en cuanto a los daños, faltantes y condiciones del equipo, contenedores y sellos. Los productos no aceptados están sujetos a la política de devolución estipulada a continuación.

Información de garantía y avisos legales (continuación)

- 10) Devolución de productos. No se podrá devolver ningún producto al vendedor sin el formato de permiso previo por escrito del vendedor de una autorización de devolución del material.
- 11) Daños en los productos devueltos. Si el comprador decide devolver el (los) producto(s) al vendedor para su restauración, el comprador acepta todos los riesgos de daño o destrucción de dicho(s) producto(s) devuelto(s), y el vendedor no será responsable de ninguna falla o incapacidad por parte del vendedor para completar la restauración sobre cualquiera de estos productos devueltos.
- 12) Limitaciones de acciones. Todas las reclamaciones, demandas o acciones se deben llevar dentro de un (1) año de la fecha de la oferta de entrega o dieciocho (18) meses del pedido del comprador, si no se realiza ninguna oferta de entrega, no obstante cualquier periodo legal de limitación de lo contrario.
- 13) Propiedad intellectual. El comprador defenderá, asegurará y mantendrá a salvo al vendedor contra cualquier y todas las reclamaciones, juicios de demanda, gastos o pérdidas resultantes de la violación de patentes de terceros, derechos de autor o marcas comerciales que surjan del cumplimiento del vendedor con el diseño, especificaciones o instrucciones del comprador. La venta de productos o piezas del presente documento por el vendedor "no expresa ninguna licencia, derecho, título de propiedad o interés por implicación, impedimento legal o diferente, bajo las reclamaciones de patente, derecho de propiedad industrial, marcas comerciales, secreto comercial o cualquier otro derecho de propiedad intelectual que cubra las combinaciones de estos productos o piezas con otos dispositivos o elementos. El vendedor se reserva todos los derechos intelectuales, títulos de propiedad e intereses en los productos y su tecnología subyacente, entregados en lo sucesivo incluido el proceso del vendedor, la manufactura y las demás tecnologías utilizadas en lo sucesivo en el desempeño del vendedor.
- 14) Responsabilidad financiera. Si a juicio único del vendedor los recursos financieros del comprador se deterioran o no son satisfactorios en cualquier momento durante el término del contrato entre las partes, entonces el vendedor podrá exigir al comprador un depósito o la seguridad o el margen adecuados para el desempeño por parte del comprador en tal cantidad o cantidades de vez en cuando como el vendedor especifique. En cuanto al requerimiento del depósito, el comprador realizará dicho depósito a más tardar al cierre del siguiente día hábil del vendedor. Si el comprador no hace realiza dicho depósito, entonces el vendedor podrá a su criterio (1) cancelar el contrato entre las partes o la porción no entregada de la misma. En cuyo caso el comprador se compromete a pagar al vendedor la diferencia entre el precio de mercado en la fecha de cancelación y el precio del contrato; (2) revender en cualquier momento por cuenta del comprador la totalidad o cualquier porción no entregada de los productos, en cuyo caso el comprador se compromete a pagar al vendedor la diferencia entre el precio de reventa y el precio del contrato o (3) de otro modo cambiar los términos de pago. En caso de que el comprador se vuelva insolvente o admita por escrito la incapacidad del comprador para pagar las deudas del comprador a medida que se vencen o si el comprador realizará una cesión de derechos con los acreedores o si se instituyen por o en contra los procedimientos del comprador en caso de quiebra o bajo cualquier ley de insolvencia o por reorganización, quiebra o disolución, el vendedor podrá dar por terminado el contrato entre las partes en cualquier momento y sin previo aviso.
- 15) Fuerza mayor. Incluido pero no limitado a los acontecimientos de guerra, incendio, epidemias, restricciones de cuarentena, inundación, huelga, problemas laborales, daños al equipo, accidentes, disturbios, imposición de cualquier reglamento de control de precios del gobierno o cualquier otro acto de la autoridad gubernamental, fuerza mayor u otras contingencias (ya sean similares o diferentes a lo anterior) más allá del control razonable del vendedor, interfiriendo con la producción, el suministro, el transporte o la práctica de consumo del vendedor en

- el momento respecto a los productos incluidos en el contrato entre las partes o en caso de incapacidad de obtener en los términos que a juicio del vendedor sea práctico cualquier materia prima (incluida sin limitación, la fuente de energía) utilizada en relación con la misma, por lo que las cantidades afectadas se considerarán un retraso excusable en el desempeño del vendedor para la duración del tiempo de dicha condición exista. El vendedor notificará al comprador tan pronto como sea posible de cualquier evento de fuerza mayor que retrase o amenace con retrasar el desempeño oportuno del vendedor en lo sucesivo. El vendedor podrá durante cualquier periodo de escasez debido a alguna de estas causas, asignar su suministro de dicha materia prima entre sus diversos usos (por ejemplo, manufactura y ventas) de la manera que el vendedor considere factible y distribuir su suministro de dichos productos entre estos diversos usos del mismo, de la forma que el vendedor considere justo y razonable.
- 16) Honorarios razonables de abogados. En caso de que se lleva a cabo una demanda u otro procedimiento para la recuperación del precio de compra o cualquier saldo de pago pendiente o el incumplimiento por el comprador de cualquier término del contrato entre el vendedor y el comprador, el comprador pagará al vendedor además de cualquier daño previsto por la ley, los honorarios razonables de abogados y gastos de cobranza.
- 17) Titulo de propiedad de seguridad. El titulo de propiedad de seguridad y el derecho de posesión de los productos vendidos a continuación permanecerán con el vendedor hasta que todas los pagos vencidos del comprador con el vendedor (incluidos los pagos diferidos evidenciados por notas o no) se hayan realizado en efectivo y el comprador se comprometa a llevar a cabo todos los actos necesarios para perfeccionar y mantener dicho derecho y título de propiedad de seguridad con el vendedor.
- 18) Cancelaciones. El comprador puede cancelar un pedido solo con el consentimiento por escrito y pago previo al vendedor de los cargos por cancelación, que tomarán en cuenta entre otras cosas los gastos incurridos y los compromisos ya realizados por el vendedor y el margen de utilidad de este.

19) Generalidades.

- (a) El contrato entre el comprador y el vendedor y la materia relacionada con el desempeño de los mismos se interpretará de acuerdo con y se regirá por la ley del estado de Michigan, sin tener en cuenta su conflicto de los principios legales. Las estipulaciones de la Convención de las Naciones Unidas para la Venta Internacional de Bienes ("CISG") no regulará los derechos y obligaciones de las partes en relación con este mandato.
- (b) Cualquier cesión del contrato entre el comprador y el vendedor o de cualquier derecho u obligación del contrato por el comprador sin el consentimiento por escrito del vendedor no será válido.
- (c) Salvo que se disponga expresamente lo contrario por escrito, las disposiciones del contrato entre el comprador y vendedor son para beneficio de las partes aquí presentes y no para ninguna otra persona.
- (d) Al aceptar la entrega de todos los bienes vendidos por el vendedor, el comprador renuncia a cualquier reclamación futura y derecho de compensación o retención contra cualquier pago vencido de aquí en adelante y se compromete a pagar todas las sumas vencidas, independientemente de cualquier conflicto, compensación o contrademanda.
- (e) Ninguna renuncia por parte del vendedor de cualquier incumplimiento de alguna disposición del contrato entre el comprador y el vendedor constituirá una renuncia de cualquier otro incumplimiento.
- (f) Los términos y condiciones establecidos anteriormente contienen todas las declaraciones, estipulaciones, garantías, acuerdos y entendimientos con respecto a la materia objeto del contrato entre

Información de garantía y avisos legales (continuación)

- el comprador y el vendedor, y su ejecución no ha sido inducida por ninguna declaración, estipulación, garantía, acuerdo o entendimiento (incluido ningún curso de trato previo entre las partes presentes) de ningún tipo que no fueran los establecidos en el presente.
- (g) Ninguna corrección, adición, alteración, modificación o renuncia de la totalidad o parte del contrato entre el comprador y el vendedor tendrá ninguna fuerza o efecto a menos que sea por escrito y esté firmada por el vendedor. Si los términos y condiciones establecidos anteriormente entran en conflicto con los de cualquier orden de compra del comprador por escrito en relación con la venta de productos o cualquier parte del mismo, entonces los términos establecidos anteriormente prevalecerán.
- (h) Además de los derechos y recursos que se le confieren al vendedor por ley, el vendedor no tendrá la obligación de proceder con el desempeño de ningún pedido o contrato, si el comprador se encuentra en demora en el cumplimiento de cualquier pedido o contrato con el vendedor, y en caso de duda en cuanto a la responsabilidad financiera del comprador, los envíos bajo este pedido se podrán suspender o enviar por letra a la vista con la guía de embarque adjunta por el vendedor.
- Ninguna demora u omisión por parte del vendedor en el uso de cualquier derecho o recurso previsto en el presente documento constituirá una renuncia a tal derecho o solución, y no constituirá una prohibición o una renuncia a cualquier derecho o solución en cualquier ocasión futura.
- 20) Contrato completo. Los términos y condiciones establecidos en el presente constituyen la expresión completa de todos los términos de este contrato y forman una declaración completa y exclusiva en cuanto al contrato entre el vendedor y el comprador sin importar ninguna otra declaración, promesa, garantía, enunciado o acuerdo en contra. Cualquier término adicional, contradictorio o diferente contenido en cualquier pedido inicial o posterior o comunicación del comprador referente a los productos descritos en el anverso del presente quedan objetados por este. Ningún curso de los tratos previos entre las partes y sin uso de cambio serán relevantes para complementar o explicar cualquier término utilizado en este contrato. La aceptación o consentimiento en un curso de desempeño presentada bajo este contrato no será relevante para determinar el significado de este contrato a pesar de que la parte que acepta o consiente tiene conocimiento del desempeño y la oportunidad de objeción. Ninguna renuncia o alteración de los términos en el presente documento será vinculante a menos que sea por escrito y firmada por un director ejecutivo del vendedor.

- 21) Cumplimiento de las leyes. Es la intención de las partes que la transacción cubierta por estos términos y condiciones cumplirá en todo momento con todas las leyes aplicables, incluidas sin limitación, todas las leyes de exportación e importación, reglamentos y restricciones, prácticas contra la corrupción extranjera y leyes contra el soborno.
- 22) Licencias de exportación/Representación ITAR. El comprador se compromete a cumplir con todas las leyes y reglamentos de exportación e importación aplicables en Estados Unidos y en el extranjero, incluidos pero no limitados a los Reglamentos Internacionales de Tráfico de Armas (ITAR) y los Reglamentos de Administración de Exportaciones (EAR) que regulan la exportación de cualquier producto y el apoyo de datos técnicos entregados en adelante. Además, no se colocará en dominio público, exportará de Estados Unidos o entregará a ninguna persona extranjera en Estados Unidos ningún dato técnico controlado sin la autorización previa específica por escrito del vendedor y el Departamento de estado de Estados Unidos o el Departamento de Comercio de Estados Unidos según corresponda. No obstante, cualquier cosa que pueda estar opuesta a la obligación del comprador como se establece en este contrato prevalecerá a la expiración o finalización de este contrato. El comprador se compromete a defender, asegurar y mantener a salvo al vendedor de cualquier reclamación o responsabilidad que pueda surgir de una transgresión del comprador de cualquier ley de importación o exportación aplicable de Estados Unidos o extranjera.
- 23) Arbitraje. Con respecto a las ventas en Estados Unidos, cualquier controversia o reclamación que surja de o en relación con el contrato entre el comprador y el vendedor o el incumplimiento del mismo, se resolverá en la ciudad y el estado de las oficinas de aceptación del vendedor, como se indica en la Sección 2, mediante el arbitraje de acuerdo con los Reglamentos de la Asociación Americana de Arbitraje y el juicio sobre el fallo dado por el árbitro podrá presentarse en cualquier tribunal que tenga jurisdicción. Con respecto a las ventas fuera de Estados Unidos, cualquier controversia o reclamación que surja de o en relación con el contrato entre el comprador y el vendedor o el incumplimiento del mismo, se resolverá en Nueva York, NY, bajo los Reglamentos de Arbitraje de la Cámara Internacional de Comercio por uno o más árbitros designados de acuerdo con las reglas dictadas y el juicio sobre el fallo dado por el árbitro podrá ser presentado en cualquier tribunal que tenga jurisdicción de conformidad con la Convención sobre el Reconocimiento y Ejecución de Laudos Arbitrales en el Extranjero de 1958.

2-0001-000-0013 Rev.: A

"DECLARACIÓN DE RESPONSABILIDAD"

ADVERTENCIA

EL INCUMPLIMIENTO O LA SELECCIÓN INADECUADA DE O EL USO INDEBIDO DE LOS PRODUCTOS DESCRITOS EN EL PRESENTE DOCUMENTO O DE SUS COMPONENTES RELACIONADOS PUEDEN OCASIONAR LA MUERTE, LESIONES Y DAÑOS A LA PROPIEDAD.

Este documento y otra información de Rodamientos Kaydon, sus filiales y los distribuidores autorizados ofrecen opciones del producto o del sistema para investigación adicional por parte de los usuarios que tienen experiencia técnica. Antes de seleccionar o utilizar cualquier producto o sistema, es importante que analice todos los aspectos de su aplicación y revise la información relacionada con el producto en el catálogo actual de productos. El usuario, a través de sus propios análisis y pruebas, es el único responsable de realizar la selección final del producto o sistema y de asegurarse de que se cumplan todos los requerimientos de desempeño, seguridad y advertencia de la aplicación. Los productos y sistemas descritos aquí, incluidos sin limitación, las características, especificaciones, diseños, disponibilidad y precios del producto, están sujetos a cambios por parte Rodamientos Kaydon y sus filiales en cualquier momento sin previo aviso.

Las marcas comerciales registradas de Rodamientos Kaydon incluyen, pero no están limitadas a, Kaydon°, Reali-Slim°, Lami-Shield°, Lami-Seal°, Reali-Design°, Reali-Design MM°, Kaydon infinite bearing solutions°, Endurakote°, WireX°, Endura-Slim°, Endura-Vac°, Ultra-Slim°, Reali-Slim TT°, Reali-Slim MM°, Thinifinite™, Slewinfinite°.

Rodamientos Kaydon 2860 McCracken Street Muskegon, Michigan 49441 EE. UU.

Tel 231.755.3741 Sin costo 800.514.3066 Fax 231.759.4102

bearings@kaydon.com www.kaydonbearings.com

